ASX RELEASE

COMPLIANCE ADDITIONS TO WILUNA DRILLING RESULTS

At the request of ASX, Toro Energy (ASX:TOE) has re-released the 7 July 2014 announcement to include JORC Table I, a competent person statement, drill hole list and the separation of indicated and measured resources on page 5 of the announcement.

Todd Alder
Company Secretary

ASX RELEASE

II July 2014

RECORD URANIUM GRADES DELIVERED AT TORO'S MILLIPEDE DEPOSIT AT WILUNA PROJECT, WA

Highlights:

- Highest ever recorded grades of uranium mineralisation at Millipede deposit;
- Maximum grade of I.4\% eU3O8 intersected at just Im below surface;
- Average grade intersections of up to 0.4% U3O8 over $1.5 m ;{ }^{1}$
- Closely spaced drilling confirms continuous high grade mineralisation zone at just Im below surface extending over the whole $100 \mathrm{~m} \times 100 \mathrm{~m}$ drilling grid area;
- Confirms robust grades and mineralisation at shallow depths in Millipede;
- Further results from three other deposits are expected to be released in the next quarter.

Toro Energy (ASX: TOE) is pleased to announce initial drilling results from the Company's largest ever drilling campaign conducted at the approved Wiluna Uranium Project. Intersections of the highest ever recorded grades of uranium mineralisation at Millipede deposit represent a significant improvement in the previously reported results.

Results from drilling at the Millipede deposit (see Figures Ia and Ib) have exceeded the Company's expectations. Specific intersections have shown (at Figure 2):
I. The highest grade intersection is $\mathrm{I} .4 \%^{2} \mathrm{eU}_{3} \mathrm{O}_{8}$ at just Im below the surface, which exceeds all previous recorded grades;
2. A continuous high grade mineralisation zone of over $\mathbf{0 . 1} \% \mathrm{eU}_{3} \mathrm{O}_{8}$, up to $\mathbf{I} .5 \mathrm{~m}$ thick at only 1.3 m below surface.

The campaign began in April 2014 and comprised I,639 air core and sonic holes for $16,375 \mathrm{~m}$ at the Centipede, Millipede, Lake Way and Lake Maitland deposits. These deposits represent 56.6MIbs (at a 200ppm cut-off) of the total regional resource of 76.5 Mlbs which form the basis of the current project economic model which has approval for the processing facility and Centipede and Lake Way deposits (see Table I). The Millipede deposit has been referred to the Western Australian and Federal governments for environmental approval.

[^0]A $100 \mathrm{~m} \times 100 \mathrm{~m}$ grid with closely spaced $5 \mathrm{~m} \times 5 \mathrm{~m}$ grade control drilling pattern was applied across each of the four deposits within high grade zones planned to be mined initially to test the integrity of current resource estimations and assess the continuity of the mineralisation.

The results were continuous across the whole of the drilling grid and represent a significant increase on previously reported grade intersections ${ }^{3}$ which averaged up to $0.24 \%_{4}^{4} U_{3} \mathrm{O}_{8}$ and peaked at $\mathrm{I} .14 \%^{5}$ $\mathrm{eU}_{3} \mathrm{O}_{8}$.
"The new high grade intersections are extremely encouraging and further confirm Toro's belief that the Wiluna deposits comprise robust grades and mineralisation at shallow depths," the Company's Managing Director, Dr Vanessa Guthrie, said today. "Each drilling campaign Toro has undertaken at Wiluna has shown higher grade mineralisation than has been historically indicated."
"Toro continues to advance the approved Wiluna Project which stands out as the one of the few projects globally that is approved and capable of being financed to bring new product to the market as the uranium price recovers."

Full results of the drilling program across all four deposits are expected by the end of the next quarter.

Figure 1a: Location of the Millipede deposit in the Wiluna Project.

[^1]

Figure 1b: Location of the Millipede close spaced drilling pattern within the 200ppm grade shell of Millipede and Centipede

Figure 2. Gamma log results showing high grade intersections between 1 and 3 metres depth from surface at the Millipede deposit.

Table 1: Wiluna Uranium Project Resources table

Vanessa Guthrie

Managing Director

MEDIA CONTACT:

Vanessa Guthrie
Kevin Skinner
Toro Energy
0892142100

[^2]
Competent / Qualified Persons' Statements

Dr Greg Shirtliff takes responsibility for all of the information presented here that relates to the results of drilling, inclusive of location of drill holes, depths of mineralization and deconvolved gamma derived uranium values. Dr. Shirtliff is a member of the Australian Institute of Mining and Metallurgy (AUSIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit un der consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. Dr. Shirtliff is a full time employee of Toro Energy Limited. There has been no change to this statement for the purpose of reporting drilling results at Wiluna since the previous reporting of drilling results at Wiluna by Toro on $9^{\text {th }}$ September 2013, except that no geochemistry has been presented here.

There has been no material change to resources of the Wiluna Project since the last reporting of the Wiluna Project's resources on the $20^{\text {th }}$ November 2013. The only change to the resource table presented here is the separation of Measured and Indicated resources. As such the competent persons' statement remains as follows:

The information presented here that relates to Mineral Resources of the Centipede, Millipede, Lake Way, Lake Maitland, Dawson Hinkler and Nowthanna deposits is based on information compiled by Dr Greg Shirtliff of Toro Energy Limited (with the aid of Mega Uranium Limited geologists Mr Stewart Parker and Mr Robin Cox in the case of Lake Maitland) and Mr Robin Simpson and Mr Daniel Guibal of SRK Consulting (Australasia) Pty Ltd. Mr Guibal takes overall responsibility for the Resource Estimate, and Dr Shirtliff takes responsibility for the integrity of the data supplied for the estimation. Dr Shirtliff is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM), Mr Guibal is a Fellow of the AusIMM and Mr Simpson is a Member of the Australian Institute of Geoscientists (AIG) and they have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. The Competent Persons consent to the inclusion in this release of the matters based on the information in the form and context in which it appears.

Toro Energy is a uranium development and exploration stage mining company based in Perth, Western Australia.
 Toro's flagship asset is the 100% owned Wiluna Uranium Project, consisting of six calcrete hosted uranium deposits with a total JORC Resource of 76.5 Mlb . The project is located 30 kilometres southeast of Wiluna in Central Western Australia. The Centipede and Lake Way deposits have received full government approval for mining providing the Wiluna Project with the opportunity to be Western Australia's first uranium mine.
 Toro also owns a highly prospective suite of exploration properties highlighted by Toro's own discovery at the Theseus Project. The Company also owns uraniumassets in the Northern Territory and in Namibia, Africa.

Toro is also pursuing growth opportunities through accretive uranium project acquisitions.
www.toroenergy.com.au
TOE - A member of the All Ordinaries Index

JORC Code, 2012 Edition - Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria
Sampling
techniques

JORC Code explanation

- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Commentary

- $\mathrm{eU}_{3} \mathrm{O}_{8}$ values as stated here are calculated from down-hole gamma radiation measurements. Geochemistry has not been used in these results.
- Gamma derived $\mathrm{eU}_{3} \mathrm{O}_{8}$ - Toro uses Auslog natural gamma probes, either in-house or from external contractors, to measure down-hole gamma radiation. Measurements are made every 2 cm with a logging speed of 3.5 m per minute.
- The gamma probes are used on all holes, which include sonic holes also used for geochemical sampling and air core holes drilled specifically for gamma probe measurements. 100 mm sonic core holes are usually 150 mm in diameter and air core holes are usually 100 mm in diameter. Approximately 95% of all holes are aircore.
- All gamma probes are calibrated at the Adelaide Calibration Model pits in Adelaide, South Australia. During probing operations every $10^{\text {th }}$ hole is logged twice as a repeat log. Selected holes across the deposits are used as reference holes for re-logging to detect drift in the instrument during each program.
- As protection from hole collapse and to protect the probe, all logging is done inside 40 mm or 50 mm PVC pipe (unless larger diameter has been used for water bores) with an average wall thickness of 1.9 mm .
- Gamma measurements are converted to equivalent $\mathrm{U}_{3} \mathrm{O}_{8}$ values ($\mathrm{eU}_{3} \mathrm{O}_{8}$) by an algorithm that takes into account the probe and crystal used, density, hole diameter, ground water where applicable and PVC pipe thickness.
- Down-hole gamma probe data is also deconvolved to more accurately

Criteria	JORC Code explanation	Commentary
		reflect what would be expected in nature for down-hole response (gamma curves).
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- Both sonic and aircore drilling techniques are utilized on the Wiluna Project. - The sonic drilling utilizes a 100 mm core barrel (inside diameter) with outside casing where needed, producing a 150 mm hole diameter and 100 mm core. Depending on the ground conditions and thus quality of core being produced, core is retrieved from the 3 m barrel in either 1 to 3 m length, 1 m at a time. Upon exiting the barrel, core is transferred into tubular plastic bags that fit the core before being placed in core trays. - Aircore drilling is conventional with a 72 mm bit producing an approximate 100 mm diameter hole.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Chip sample recoveries are not recorded as the chips are not used for any systematic analysis of uranium concentrations. - Sonic core recoveries are estimated based on the drillers direction to definitive lost core, observations made on quality of sample during geological logging and sample weight comparisons to average weights and rock type. It should be noted that precise core recovery estimation on sonic drillcore in the Wiluna deposits is inherently difficult due to expansion and contraction of soft sediments during drilling and during recovery of core from the barrel. - Core loss is minimized by 'casing as we drill' through all ore zones or any zone where the geological information is critical such as for geotechnical purposes. - There is no correlation between estimated core loss and grade in the sonic core. - Grade in geochemical samples is also checked against composited gamma derived grades (see above), which acts as another check on

Criteria	JORC Code explanation	Commentary
		errors in the geochemistry that may (or may not) be due to core recovery. - It should be noted that geochemistry information was available for this announcement.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- Geology is not used in the resource estimation process, the reasons for this are explained in more detail below, however, basically the deposit has been found to be correlated more to groundwater and depth from the surface than to any geological unit. Thus the geological logging is adequate for resource estimation. - Current geological logging (all Toro, 2009 onwards) is considered to be adequate for the stage of mine planning that Toro is currently at on the Wiluna Project. Further work is considered necessary to amalgamate or align historical geology logs and geology to current. This can be achieved with the results of the 2013 drilling campaign, which was Toro's largest prior to this 2014 campaign and which covered all but 1 of the Wiluna Project deposits (Nowthanna Deposit). - Current logging is both qualitative (subjective geological opinion of rock type and colour) and quantitive (recording specific depth intervals and percentages of grain sizes). Core photographs are taken for each individual metre (prior to 2013) and half metre (2013) after core has been split down the middle for logging and so as to see sedimentalogical features for logging (avoiding clay smear on outer surface of core made by drill rods). - Historical costeans were not geologically logged, although in some circumstances photographs of costean walls were taken and stored on the company drive.
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	- No geochemistry was available for this ASX release. See above for sampling technique of down-hole gamma probes.

Criteria

JORC Code explanation

- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Quality of assay data and laboratory
tests

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Commentary

- Sample preparation has been described above under 'sampling techniques.
- No geochemistry was available for this ASX release. See above for sampling technique of down-hole gamma probes.
- No geochemistry was available for this ASX release. See above for sampling technique of down-hole gamma probes.
- No geochemistry was available for this ASX release. See above for sampling technique of down-hole gamma probes.
- No geochemistry was available for this ASX release. See above for sampling technique of down-hole gamma probes.
- Historical geochemistry data is almost entirely XRF
- Down-hole gamma tools are used as explained above. All tools are Auslog natural gamma probes calibrated at the Adelaide Calibration Model pits in Adelaide, South Australia
- See above for all information regarding gamma probes and gamma probe sampling.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Toro has a calibrated (at the Adelaide Calibration Model pits in Adelaide, South Australia) Auslog gamma probe to check the probing results achieved by external contractors. - In large areas of inferred resource covered by historical holes up to 10% of all holes are twinned using the sonic drilling technique for geochemical sampling and comparison with historical data. - All primary data (gamma log las files, geochemical sample lists, final collar files, geological logs, core photographs, electronic geochemical results, drillers plods, probing plods, deconvolved gamma files, gamma gamma density logs, disequilibrium analysis results etc) are stored on the company server in the appropriate drive and folders. Any hardcopy data, such as official geochemistry results or any paper copy geological logs, are kept in hardcopy in folders and archives as well as being scanned and kept on the company server in the appropriate drives and folders. - Data entry procedures are described in some detail below in section 3 under 'data integrity'. - To date, there has been no adjustments made to either geochemical assay $\mathrm{U}_{3} \mathrm{O}_{8}$ data (or for any other elements) or gamma probe $\mathrm{eU}_{3} \mathrm{O}_{8}$ data. Slight adjustments are made to some geochemical assay data to account for depth corrections if an interval error is discovered, this is rare and always restricted to the near surface above mineralized zones. There was no geochemical data available for this ASX release.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	- All drill hole collars are pegged to the planned collar location using a differential GPS (DGPS) with base station (currently an Austech ProMark500 and ProFlex500). At the end of the drilling campaigns all collars a picked up using the same DGPS equipment for the final collar locations that are entered into the database. Accuracy of the DGPS is approximately to 100 mm in the vertical and 50 mm on the horizontal.

Criteria

JORC Code explanation
Commentary

- Due to all drill holes being shallow (maximum depth of 25 m) and vertical no down-hole surveying is required.
- The grid system used on the Wiluna Project is Geocentric Datum of Australia (GDA) 94, zone 51 for the Centipede, Millipede, Lake Way and Dawson Hinkler deposits and zone 50 for the Nowthanna Deposit.
- Topographic control is largely achieved by the DGPS with base station and a LiDAR Survey. As stated above, all Toro drill holes are accurate to approximately 100 mm on the vertical, this covers all holes drilled from 2011 through to current. All historical holes at Centipede, Millipede and Lake Way have been 'pinned' to a topographic surface created from a LiDAR survey. At Dawson Hinkler all drill holes have been 'pinned' to a topographic surface created from current drill hole collars surveyed in a with a DGPS and base station. At Nowthanna, no major corrections have been made to the drill hole collars, investigation in 3-Dimensions has shown no significant offsets.

Data spacing

and
distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- No exploration results, resource drilling only
- For the purpose of this exercise in reconciliation the $5 \times 5 \mathrm{~m}$ grade control grid is considered to be far more than adequate.
- Previously stated resource ($8^{\text {th }}$ October 2013 ASX release) is at: Measured resources drilled at $25-35 \mathrm{~m} \times 25-35 \mathrm{~m}$.
Indicated Resources $50 \mathrm{~m} \times 50 \mathrm{~m}$ to $100 \mathrm{~m} \times 100 \mathrm{~m}$ drill spacing, with good cover of sonic drilling.
Inferred Resources: all other holes within mineralization envelope, greater than $100 \times 100 \mathrm{~m}$.
- Sample compositing to 0.5 m composites has been applied to the 2 cm

Criteria	JORC Code explanation	Commentary
	- Whether sample compositing has been applied.	interval eU3O8 data to match the 0.5m geochemical core samples.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- Sampling is non-subjective down-hole sampling from the surface, either at 2 cm intervals in the case of gamma probe data or 0.5 m samples in the case of geochemistry. Historical geochemistry represents a similar non-bias down-hole process. The sampling orientation employed provides no bias to the groundwater related distribution of mineralization. - No bias suspected.
Sample security	- The measures taken to ensure sample security.	- Sampling of gamma derived measurements is achieved by a single contractor using a gamma probe (see sampling techniques above). Raw gamma probe data is converted into a las file and sent to a Perth based office on a daily basis by email. This data is then packaged and sent to the Toro Energy Database Manager, who sends it to the analyst (consultant - 3D Exploration Pty. Ltd.) for quality auditing and calculation into U concentrations and deconvolution.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- An internal review of geochemical sampling techniques in 2012 lead to a change in practice from non-selective half-core sampling to full core sampling so as to reduce total sampling error. This recommendation was followed in 2013 and has satisfactorily reduced sampling error to below $\pm 10 \%$. - All gamma data has been reviewed by 3D Exploration Pty. Ltd. and only that data found to be satisfactory has been included.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- The tenement for which the reported results relate to is a mining lease, M53/1095, which contains part of the stated resource of Millipede, along with the adjacent mining lease, M53/336. The Millipede resource has been publically declared in the ASX release of $9^{\text {th }}$ September 2013). M53/1095 is located in the north of the North East Yilgarn region just over 710 km NE of Perth and at the northern margins of the Norseman-Wiluna greenstone belt of the Eastern Goldfields. It has an area of 610 hectares and is due to expire on the $2^{\text {nd }}$ December 2033, having been granted on the $3^{\text {rd }}$ December 2012. The tenement is entirely owned by Toro Energy Limited under its wholly owned subsidiary, Nova Energy Pty. Ltd. Nova (Toro) owns all rights to uranium and MPI Nickel owns non-uranium rights. MPI Nickel have royalty obligations to Outokumpu for gold and nickel only. The Millipede deposit, as part of Toro's Wiluna Project, is subject to Toro's current negotiations for a mining agreement with the traditional owners. Whilst there is a small portion of M53/1095 subject to a Department of Indigenous Affairs (DIA) listed site, there are no DIA sites affecting the area drilled or any part of the Millipede resource as stated at the 200 $\mathrm{ppm} \mathrm{eU}_{3} \mathrm{O}_{8}$ cutoff. Steps are currently being undertaken by Toro Energy for environmental approval of the Millipede resource with the WA EPA. - M53/1095 is in good standing with all government requirements and expenditure.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	The Centipede and Millipede deposits were discovered by Esso Exploration and Production Australia and its various joint venture partners in 1977, through a regional RAB drilling over a radiometric anomaly. Exploration occurred between this time and 1982 with evaluation of the Centipede deposit with approximately 500 drill holes. This drilling was mainly by RC drilling but some auger and diamond drilling was also completed. The mineralised areas were drilled out on 100 m centres and the surrounding areas on 200 m centres.

Commentary
The grade and thickness of the uranium mineralisation was determined from radiometric logging of all holes. Some chemical assays were also completed and disequilibrium studies carried out.
Since that initial exploration and definition of a uranium resource various companies have had ownership of the Centipede resource but little further work was completed until 1999 when Acclaim Uranium NL undertook further work by gamma logging over 300 of the previous holes as well as drilling a further 120 aircore drill holes.
Nova Energy gained ownership of the Centipede project and undertook various work programmes in 2006 and 2007 including:

- Compilation of historical data into a database
- Drilling of over 400 aircore drill holes with associated downhole gamma logging and sample assaying
- Gamma logging of approximately 100 historical holes where data had been lost
- Two large exploration costeans completed with a Wirtgen 2200 continuous miner
- Various baseline studies including groundwater, environmental and radiological studies
- Acquisition of satellite imagery
- Metallurgical studies
- Project scoping study

Significant work completed by Toro Energy on the Millipede deposit alone has included:

- Detailed airborne magnetic, radiometric and digital terrain model surveys over the project area in 2010
- A resource estimation update of all of the Wiluna uranium deposits by SRK consulting in 2011
- Resource estimation update of the Centipede and Millipede resources by SRK Consulting in 2012 taking into account new density information
- First phase 3-D geological modelling of all of the Wiluna Project's deposits in 2012, including Millipede
- First phase 3-D ore shell modelling of all of the Wiluna Project's deposits in 2012.
- Aircore and sonic core resource drilling in 2013
- A resource estimation update on Millipede, along with all other deposits, in 2013.

Geology

- Deposit type, geological setting and style of mineralisation.
- The Millipede deposit is a calcrete associated surficial uranium deposit.

Regional Geology - The Wiluna Uranium Project is situated in the northeast of the Archean Yilgarn Block close to the Capricorn Orogen, the structural zone formed when the Yilgarn Block and the Pilbara Block joined some 1830-1780 million years ago. The basement rocks at Wiluna are part of the Eastern Goldfields Terrane ($2.74-2.63 \mathrm{Ga}$), a succession of greenstone belts geographically enclosed by younger granitoid (gneiss-migmatite-granite, banded gneiss, sinuous gneiss and granitic plutons) that makes up the entire eastern Yilgarn Block and representative of an extensional tectonic regime with brief periods of compression.

The Wiluna deposits themselves are hosted within recent to Holocene sedimentation that sit in the upper reaches of a large southeast to south flowing drainage system that began forming in the Mesozoic within Permian glacial formed tunnel valleys (Broekert and Sandford, 2005). Satellite radiometric images clearly show this drainage system, now a dry largely ephemeral system of salt lakes.

Criteria
JORC Code explanation
Commentary
Local Geology - Locally, the underlying basement geology of the Millipede deposit is a north to northwest striking metafelsic and intermediate volcanic unit amongst a relatively wide zone of shearing. A thin extension of the greenstones that dominate further to the north and west, are also present beneath the eastern most margins. At the surface, little of the basement rocks are exposed. The deposits are associated with, although not restricted to calcrete at the current water table within stream and marginal lacustrine sediments deposited around the Holocene, but probably as far back as the Miocene. At Millipede sand dunes cover a large proportion of the mineralization.

The location of uranium mineralisation is controlled by a palaeo-drainage system that originated in an area of granite outcrop to the west and discharged into Lake Way on its western shore. The palaeo-drainage system is represented by a linear deposit of calcrete 30 km long and approximately 2 km wide. Aerial photographs of the delta area show evidence of stream meandering in recent times and this may have been a controlling factor in the current location of the uranium.

Mineralisation - The principal ore mineral is the uranium vanadate, Carnotite ($\mathrm{K}_{2}\left[\mathrm{UO}_{2}\right]_{2}\left[\mathrm{VO}_{4}\right] 2.3 \mathrm{H}_{2} \mathrm{O}$). Carnotite has been found as micro to crypto-crystalline coatings on bedding planes in sediments, in the interstices between sand and silt grains, in voids and fissures within calcrete, dolomitic calcrete, and calcareous silcrete, as well as small concentrations (or 'blotches') in silty clay and clay horizons.

The sediments hosting the Carnotite are part of a small deltaic paleochannel system that once, and to an extent still, flowed into a relatively large but very shallow inland lake. The delta splays from the end of the palaeochannel, which itself is host to Carnotite mineralisation further 'up-stream' with the two deposits known as the Dawson Well and Hinkler Well Uranium Deposits. Drainage in the channel system is towards the delta and Lake Way from the south and southwest. The current stream

Commentary
system flanks the delta on both sides and still flows into the lake (Lake Way) but it is now definitively ephemeral with a normally weak and limited flow restricted to the wetter summer months or a stronger flow after storm events. The lake is also thus ephemeral with evaporite precipitates dominating the surface, a product of low influx, long residence times and high evaporation rates.

A drying climate has led to most of the delta being covered in fine silty sand-dunes which have subsequently been vegetated. Apart from a large clay pan, most of the Millipede tenements, including the ground referred to in this report (Figure 2), are covered by vegetated dune sands.

The main economic concentration of Carnotite, that targeted for mining, is restricted to a zone some 1-6 metres below the surface that seems to be related to the current water table. The zone is thus not lithologically specific, rather forming a wide flat and continuous lens stretching approximately from the central delta to the current lake shoreline and inhabiting calcrete, silcrete, sandy silts and clays. This zone does however coincide with a much thicker calcareous horizon that is more prominent away from the lake shoreline and often consists of competent to hard calcrete and calcareous silcrete (possibly silicified calcrete). The calcrete zone is also definitively related to the water table, although its specific relationship with the deposition of the Carnotite remains complex and somewhat unexplained. However, it could be argued that the calcrete may help form a pH related chemical trap that pushes the oxidised uranium and vanadium complex over its solution to solid phase boundary.

Locally, the Abercromby Creek straddles a boundary between highly weathered granites and greenstones, flowing from a largely granitic terrain into largely ultramatic greenstone terrain of the Norseman-Wiluna

Criteria	JORC Code explanation	Commentary
		greenstone belt, although geological maps also place it at a precise boundary closer to the lake shoreline whereby ultramafics dominate its northern flank and granites dominate its southern flanks. It has been argued that the weathered granites are a possible source for the uranium and the weathered greenstones a possible source for the vanadium in the Carnotite mineralisation. Regionally, the deposits associated with Lake Way can be included in a province of similar style calcrete associated uranium deposits all in the NE Yilgarn of Western Australia and inclusive of much larger deposits such as Yeelirrie.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- All drill holes from the 2014 drilling program within the grade control grid on the Millipede deposit, for which this ASX announcement applies, were vertical and drilled between 9-12 m deep, except for a single sonic hole of 14 m depth. A total of 390 aircore holes were drilled and 12 sonic holes (inclusive of 2 geotechnical holes) for a total of $3,649 \mathrm{~m}$ within the Millipede grade control test grid. The area drilled was flat lying with an average elevation of 492 m ASL . The mineralized zone targeted and intercepted ranged from 1-1.5 m thick from 1-1.5 m from the surface.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- All results representing average grades over stated intervals reported here were based on a $500 \mathrm{ppm} \mathrm{eU}_{3} \mathrm{O}_{8}$ cut-off of the upper and lower intercept (boundary of the mineralized zone). - No aggregation of intervals was made. - All results are reported from deconvolved gamma data converted to

Criteria	JORC Code explanation	Commentary
		$\mathrm{eU}_{3} \mathrm{O}_{8}$ as stated above in section 1 of this table.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	- The mineralization lenses of all of the Wiluna Uranium deposits are horizontal in nature. Thus, given that all drill holes are vertical from the surface, and hence perpendicular to mineralization, all stated mineralization intercept thicknesses represent the TRUE thickness of the mineralization lens at the specified cutoff grade (in this case 500 ppm e $\mathrm{U}_{3} \mathrm{O}_{8}$).
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	- All appropriate maps have been included with this ASX release. It should be noted that the drilling has occurred on a $5 \times 5 \mathrm{~m}$ drill spacing within a $100 \times 100 \mathrm{~m}$ grid, as shown in the figure attached and in the location within an already JORC compliant resource as shown in the figure attached. It is not considered necessary to include a 'close-up' of the grade control drill pattern at this stage, any further than the currently indicated $100 \times 100 \mathrm{~m}$ square. It is argued here that a closeup drill pattern would confuse the reader as to thinking the area within the current resource represented by the drilling was larger than it actually is. The 'distant' view of the small $100 \times 100 \mathrm{~m}$ grid within the entire Centipede and Millipede resource more truly reflects the representation of the drill pattern as a proportion of the entire resource.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- As stated above, these are not exploration results, this is drilling within a previously predicted zone of mineralization within a publically stated resource (see $8^{\text {th }}$ October 2013 ASX release). In this ASX release it is accurately noted that a continuous zone of mineralization of over 0.1% $\mathrm{eU}_{3} \mathrm{O}_{8}$ has been intersected across the entire grade control grid (100 x 100 m in diameter) and is up to 1.5 m thick. This incorporates all holes drilled within the grid.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential	- Not applicable as this drilling is not exploration drilling, rather drilling into an already JORC compliant Indicated resource (see ASX release of $8^{\text {th }}$ October 2013). Geology is noted above inclusive of geological observations and observations regarding mineralization. Density has been described previously (see JORC tables in the $8^{\text {th }}$ October 2013

Criteria	JORC Code explanation	Commentary
	deleterious or contaminating substances.	ASX release). Metallurgical testing on material from the Wiluna Uranium Project is to a stage that product has been made in a laboratory scale facility and proved to be successful.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- These drill results are being used to estimate the resources within a grade control grid of $100 \times 100 \mathrm{~m}$ in diameter, which will then be used to reconcile against the current block model. The aim is to test the ability of the current block model to predict accurately to a mining scale (to a $5 \times 5 \mathrm{~m}$ data spacing) and to ascertain if the spatial distribution of the mineralization allows the mineralization to be mined to the mining parameters used in the economic model. - As this is essentially an infill drilling program with a grade control scaled drilling pattern and not an exploration program, there are no possible extensions to mineralization that can be highlighted as a result of this drilling.

Section 3 Estimation and Reporting of Mineral Resources

NOT APPLICABLE - NO RESOURCE UPDATE REPORTED - NO MATERIAL CHANGE TO RESOURCES

Section 4 Estimation and Reporting of Ore Reserves

NOT APPLICABLE - NO RESERVES REPORTED
Section 5 Estimation and Reporting of Diamonds and Other Gemstones
NOT APPLICABLE - URANIUM ONLY

Table of drill hole mineralised intercepts - all holes drilled

Interval boundary grade cut off: $500 \mathrm{ppm} \mathrm{eU}_{3} \mathrm{O}_{8}$
Minimum interval width: 0.20
Max internal dilution: 0.20
Calculated averages to nearest ppm
All drill holes vertical
Note: 1000 ppm $=0.1 \%$

HolelD	Easting	Northing	Depth	RL	From	To	Thickness	Grade_Avg	Max Grade in hole
	(GDA 94)	(GDA 94)	m	(m ASL)	(m)	(m)	(m)	(ppm eU3 O_{8})	$\begin{gathered} \text { (ppm } \\ \text { eU3O8) } \end{gathered}$
WAC0761	235979.6	7029274	9	491.91	1.14	2.78	1.64	1015	2911
WAC0762	235985.3	7029266	9	491.93	1.14	2.68	1.54	821	1967
WAC0763	235991	7029258	9	491.84	1.02	2.62	1.6	1213	2889
WAC0764					1.06	1.62	0.56	939	
WAC0764	235996.9	7029250	9	491.87	1.9	2.7	0.8	2019	3590
WAC0765	236002.6	7029241	9	491.88	1.4	3.02	1.62	1103	3136
WAC0766	236008.3	7029233	9	491.87	0.94	2.82	1.88	1409	6297
WAC0767	236014	7029225	9	491.89	0.76	3.08	2.32	2393	5504
WAC0768	236019.8	7029217	9	491.88	0.92	2.94	2.02	1577	4331
WAC0769	236025.4	7029209	9	491.88	1.48	2.98	1.5	1653	3184
WAC0770	236031.4	7029201	9	491.94	1.5	3.06	1.56	2304	8778
WAC0771	236039.3	7029206	9	491.89	1.54	2.68	1.14	1643	2933
WAC0772	236033.6	7029214	9	491.94	1.44	2.72	1.28	2288	4363
WAC0773	236028	7029222	9	491.84	1.56	3.22	1.66	3000	7700
WAC0774	236022.3	7029231	9	491.89	0.76	3.3	2.54	1985	7874
WAC0775					0.82	1.48	0.66	1190	
WAC0775	236016.6	7029239	9	491.86	1.9	2.68	0.78	1944	4131
WAC0776					1.1	1.54	0.44	723	
WAC0776	236011	7029247	9	491.87	1.9	2.8	0.9	2100	3979
WAC0777	236005.1	7029255	9	491.86	2.12	2.96	0.84	959	1549
WAC0778	235999.3	7029263	9	491.86	1.16	2.66	1.5	981	2006
WAC0779					0.86	1.54	0.68	1166	
WAC0779	235993.6	7029271	9	491.87	1.86	2.98	1.12	1565	3754
WAC0780					0.9	1.38	0.48	896	
WAC0780	235987.9	7029280	9	491.86	1.88	2.74	0.86	1260	2041
WAC0781	235996.1	7029286	9	491.9	1.72	2.7	0.98	922	1827
WAC0782	236001.9	7029278	9	491.87	2.24	2.72	0.48	1890	3958
WAC0783					1.3	1.68	0.38	834	
WAC0783	236007.7	7029269	9	491.89	2.24	2.8	0.56	1758	2704
WAC0784	236013.4	7029261	9	491.85	0.76	3.12	2.36	1536	3698
WAC0785					0.88	1.48	0.6	658	
WAC0785	236019.1	7029253	9	491.92	2.08	2.78	0.7	1326	2808
WAC0786	236024.8	7029245	9	491.89	0.74	2.64	1.9	1063	2292
WAC0787	236030.5	7029237	9	491.87	1.46	3.14	1.68	2789	11052
WAC0788	236036.1	7029228	9	491.87	1.62	3.22	1.6	2005	5555
WAC0789	236041.9	7029220	9	491.87	1.6	3.18	1.58	1900	3874
WAC0790	236047.8	7029212	9	491.85	1.44	3.24	1.8	2394	4359

WAC0791	236056.3	7029217	9	491.85	1.24	2.9	1.66	2053	4885
WAC0792	236050.2	7029226	9	491.78	1.12	2.74	1.62	3789	12110
WAC0793	236044.6	7029234	9	491.93	1.56	3.04	1.48	3022	4809
WAC0794	236038.6	7029242	9	491.87	1.98	2.8	0.82	2352	5439
WAC0795	236032.8	7029250	9	491.87	2.08	2.82	0.74	3680	8114
WAC0796	236027	7029258	9	491.89	1.86	3.12	1.26	1764	4123
WAC0797	236021.5	7029267	9	491.85	1.08	2.98	1.9	1414	2816
WAC0798	236015.7	7029275	9	491.82	0.98	2.74	1.76	2187	4713
WAC0799	236009.8	7029283	9	491.87	1.4	3.12	1.72	3071	5299
WAC0800	236004.3	7029291	9	491.82	1.48	2.86	1.38	2950	6394
WAC0801	236012.4	7029297	9	491.82	1.32	3.02	1.7	2300	4962
WAC0802	236018.3	7029289	9	491.86	1.7	2.82	1.12	1950	4196
WAC0803	236024	7029281	9	491.87	2.1	2.7	0.6	1230	1573
WAC0804	236029.8	7029273	9	491.86	1.4	2.78	1.38	1107	2532
WAC0805	236035.6	7029264	9	491.87	1.36	2.56	1.2	1513	2946
WAC0806	236041.4	7029256	9	491.85	1.88	2.66	0.78	1725	3585
WAC0807	236047.2	7029248	9	491.86	2.06	2.78	0.72	1065	1572
WAC0808	236052.7	7029240	9	491.84	1.04	2.78	1.74	2348	6116
WAC0809	236058.6	7029232	9	491.88	1.64	2.78	1.14	2637	5433
WAC0810	236064.1	7029223	9	491.9	1.42	2.92	1.5	1748	3571
WAC0811	236072.3	7029229	9	491.82	1.66	2.78	1.12	1572	2273
WAC0812	236066.5	7029237	9	491.82	1.32	2.84	1.52	1711	3331
WAC0813	236060.8	7029245	9	491.84	1.3	3.04	1.74	2330	6068
WAC0814	236055.2	7029254	9	491.83	1.46	2.92	1.46	2031	6666
WAC0815	236049.3	7029262	9	491.84	1.68	2.62	0.94	3584	10521
WAC0816	236043.6	7029270	9	491.88	1.48	3.06	1.58	1569	2910
WAC0817	236037.8	7029278	12	491.82	0.74	3.16	2.42	2133	6415
WAC0818	236032	7029286	12	491.82	1.14	2.88	1.74	1743	3988
WAC0819	236020.6	7029303	9	491.94	1.54	2.94	1.4	1795	3400
WAC0820	236028.7	7029309	9	491.87	1.44	2.7	1.26	1545	3717
WAC0821	236034.7	7029300	9	491.88	1.26	2.78	1.52	3083	8590
WAC0822	236040.4	7029292	9	491.85	1.08	2.66	1.58	1610	3681
WAC0823	236046.2	7029284	12	491.86	1.34	2.88	1.54	3721	9625
WAC0824	236051.9	7029276	9	491.82	1.36	2.82	1.46	2075	4082
WAC0825	236057.6	7029268	9	491.83	1.5	3.1	1.6	2088	3960
WAC0826	236063.5	7029259	9	491.87	1.34	2.78	1.44	1829	4906
WAC0827					1.32	1.9	0.58	879	
WAC0827	236069.2	7029251	9	491.86	2.26	2.88	0.62	1068	1376
WAC0828	236074.9	7029243	9	491.83	1.4	2.86	1.46	1129	2574
WAC0829	236080.5	7029235	9	491.87	2.04	2.74	0.7	2288	3313
WAC0830	236088.9	7029240	9	491.81	2	2.88	0.88	3552	6291
WAC0831					0.54	0.86	0.32	726	
WAC0831	236082.9	7029249	9	491.85	1.8	2.78	0.98	1605	2712
WAC0832	236077.2	7029257	9	491.82	1.22	3.02	1.8	2633	5003
WAC0833	236071.3	7029265	9	491.81	1.56	2.84	1.28	1937	4068
WAC0834	236065.8	7029273	12	491.88	1.58	3.08	1.5	2499	4380
WAC0835					1.02	1.62	0.6	775	
WAC0835	236054	7029289	9	491.86	1.94	2.88	0.94	1627	2658
WAC0836	236048.3	7029298	9	491.86	1.6	2.78	1.18	2132	3610
WAC0837	236042.8	7029306	12	491.86	1.48	2.84	1.36	2765	4458

WAC0838					0.56	0.8	0.24	665	
WAC0838	236037.1	7029314	9	491.83	1.1	2.72	1.62	1119	2299
WAC0839	236045.3	7029320	9	491.86	1.54	2.8	1.26	1071	1426
WAC0840	236051.1	7029312	9	491.84	1.32	2.76	1.44	1781	4424
WAC0841	236056.7	7029304	9	491.83	1.14	2.8	1.66	2429	4709
WAC0842	236062.5	7029296	12	491.88	1.66	2.94	1.28	3933	8639
WAC0843	236068.4	7029287	9	491.88	1.24	2.9	1.66	1263	2221
WAC0844	236074.2	7029279	9	491.87	1.16	2.94	1.78	2022	3792
WAC0845	236079.7	7029271	9	491.84	1.54	3	1.46	1861	4311
WAC0846	236085.5	7029263	12	491.84	1.48	2.94	1.46	3138	6300
WAC0847	236091.2	7029255	9	491.86	1.78	2.72	0.94	1678	3222
WAC0848	236096.9	7029247	9	491.85	1.42	2.92	1.5	1722	4290
WAC0849	236104.5	7029252	9	491.89	1.28	2.96	1.68	3136	9074
WAC0850	236099.2	7029260	9	491.91	1.06	3.18	2.12	1522	3071
WAC0851	236093.5	7029268	9	491.88	1.26	2.94	1.68	2419	4283
WAC0852	236087.8	7029276	9	491.91	1.26	2.98	1.72	1528	3342
WAC0853	236082.2	7029284	9	491.91	1.4	3.06	1.66	1899	3227
WAC0854	236076.3	7029293	9	491.94	1.4	3.06	1.66	1920	2907
WAC0855	236070.5	7029301	9	491.87	1.26	3.1	1.84	3244	6344
WAC0856	236064.7	7029309	9	491.87	1.32	2.88	1.56	3180	6495
WAC0857	236059.1	7029317	9	491.92	1.52	2.8	1.28	3657	8354
WAC0858	236053.4	7029326	9	491.84	1.54	2.44	0.9	1391	2244
WAC0956	236054.5	7029332	9	491.89	1.46	2.58	1.12	2260	5862
WAC0957	236060.2	7029325	9	491.88	1.4	2.86	1.46	1353	2345
WAC0958	236066.1	7029316	9	491.91	1.5	2.88	1.38	2173	4620
WAC0959	236077.6	7029300	9	491.94	1.38	2.86	1.48	2707	5426
WAC0960	236083.3	7029292	9	491.93	1.16	2.82	1.66	2307	5218
WAC0961	236089.1	7029284	9	491.88	1.28	3.02	1.74	1561	3568
WAC0962	236094.7	7029276	9	491.92	1.46	2.82	1.36	1336	2958
WAC0963	236100.4	7029267	9	491.86	1.16	2.84	1.68	1725	4238
WAC0964	236106.3	7029259	9	491.89	1.42	2.94	1.52	2323	6698
WAC0965	236097.7	7029253	9	491.83	0.66	2.7	2.04	1551	3724
WAC0966	236092.2	7029261	9	491.86	1.28	2.76	1.48	2401	4534
WAC0967	236086.7	7029269	9	491.85	1.5	2.96	1.46	1974	3224
WAC0968	236081	7029278	9	491.9	1.34	3.02	1.68	2406	4988
WAC0969	236075.1	7029286	9	491.91	1.24	3.04	1.8	2147	3255
WAC0970	236069.4	7029294	9	491.84	0.92	2.94	2.02	2719	4860
WAC0971	236063.7	7029302	9	491.85	1.18	3.26	2.08	2299	6134
WAC0972	236057.9	7029310	9	491.84	1.14	3	1.86	2105	3761
WAC0973	236052.2	7029319	9	491.85	1.34	2.62	1.28	1712	2649
WAC0974	236046.7	7029327	9	491.84	1.44	2.58	1.14	1273	1859
WAC0975	236038.1	7029322	9	491.84	0.98	2.8	1.82	1323	2877
WAC0976	236044	7029313	9	491.85	1.5	2.72	1.22	1820	3088
WAC0977	236049.7	7029305	9	491.97	1.5	2.84	1.34	1760	3407
WAC0978	236055.6	7029297	9	491.84	1.36	2.74	1.38	1510	2796
WAC0979	236061.3	7029289	9	491.85	1.74	2.82	1.08	1475	3048
WAC0980	236067.1	7029280	9	491.89	1.32	2.88	1.56	1783	3162
WAC0981	236072.8	7029272	9	491.85	1.56	2.96	1.4	2329	5440
WAC0982	236078.5	7029264	9	491.86	1.34	3.02	1.68	2078	3550
WAC0983	236084.2	7029256	9	491.85	1.54	2.82	1.28	2993	5677

WAC0984	236090.1	7029247	9	491.82	1.76	2.7	0.94	1428	2513
WAC0985	236081.5	7029242	9	491.78	2.06	2.78	0.72	2058	3037
WAC0986	236076	7029250	9	491.82	1.8	2.9	1.1	1216	2459
WAC0987	236070.1	7029258	9	491.83	1.26	2.92	1.66	1765	3131
WAC0988	236064.6	7029266	9	491.81	1.38	3.08	1.7	2304	4470
WAC0989	236058.7	7029275	9	491.84	1.22	3.22	2	2291	4902
WAC0990	236053.1	7029283	9	491.85	1.28	2.82	1.54	2767	6373
WAC0991	236047.3	7029291	9	491.87	1.24	2.68	1.44	1962	4536
WAC0992	236041.6	7029299	9	491.88	1.42	2.88	1.46	2195	4859
WAC0993	236036	7029307	9	491.86	1.3	2.86	1.56	2560	4202
WAC0994	236030.2	7029316	9	491.9	1.16	2.98	1.82	1576	2649
WAC0995	236022.1	7029310	9	491.88	1.44	2.62	1.18	3349	6529
WAC0996	236027.7	7029301	9	491.87	1.5	2.96	1.46	3009	9850
WAC0997	236033.2	7029293	9	491.86	1.5	2.7	1.2	4952	14028
WAC0998	236039	7029285	9	491.83	1.58	3.02	1.44	1864	4648
WAC0999	236044.7	7029277	9	491.8	1.2	2.72	1.52	3574	11620
WAC1000	236050.7	7029269	9	491.87	1.56	3.16	1.6	1182	2147
WAC1001	236056.3	7029261	9	491.9	1.36	2.78	1.42	2068	4723
WAC1002	236062.1	7029252	9	491.89	2.06	2.92	0.86	920	1305
WAC1003	236067.8	7029244	9	491.85	0.8	2.72	1.92	1639	5804
WAC1004	236073.7	7029236	9	491.86	2.22	2.76	0.54	1640	2848
WAC1005	236065.2	7029230	9	491.84	1.5	2.78	1.28	2340	4370
WAC1006	236059.6	7029238	9	491.87	1.34	2.9	1.56	1450	2673
WAC1007	236053.9	7029247	9	491.87	1.16	2.92	1.76	1619	3826
WAC1008	236048.1	7029255	9	491.89	1.94	3.08	1.14	1511	2424
WAC1009	236042.4	7029263	9	491.86	1.24	3.18	1.94	1817	4446
WAC1010	236036.6	7029271	9	491.85	1.14	3.04	1.9	1804	3862
WAC1011					0.98	1.2	0.22	658	
WAC1011	236030.9	7029279	9	491.84	1.52	2.96	1.44	2332	4664
WAC1012	236025	7029288	9	491.87	0.82	2.92	2.1	1722	3007
WAC1013	236019.6	7029296	9	491.86	1.26	2.86	1.6	2535	4251
WAC1014	236013.8	7029304	9	491.88	1.48	2.7	1.22	2878	5656
WAC1015	236005.7	7029298	9	491.85	1.54	2.94	1.4	1121	2529
WAC1016	236011.3	7029290	9	491.85	1.54	3.02	1.48	2335	3756
WAC1017	236017	7029282	9	491.86	0.86	2.98	2.12	2063	5333
WAC1018	236022.7	7029274	9	491.85	1.42	2.94	1.52	2137	3694
WAC1019	236028.4	7029266	9	491.85	1.4	2.8	1.4	1610	3088
WAC1020	236034.2	7029257	9	491.78	1.94	2.78	0.84	2968	5875
WAC1021	236039.8	7029249	9	491.82	1.94	2.8	0.86	2970	7636
WAC1022	236045.6	7029241	9	491.87	1.24	2.96	1.72	1628	5924
WAC1023	236051.4	7029233	9	491.85	1.36	2.88	1.52	2190	3949
WAC1024	236057.2	7029225	9	491.87	1.52	2.86	1.34	3301	8058
WAC1025	236048.8	7029219	9	491.86	1.46	3.06	1.6	2524	6577
WAC1026	236043.2	7029227	9	491.84	1.62	3.26	1.64	3143	10891
WAC1027	236037.5	7029235	9	491.86	1.44	3.2	1.76	2961	7416
WAC1028	236031.9	7029244	9	491.87	1.22	2.76	1.54	2155	8887
WAC1029	236026	7029252	9	491.85	1.22	2.64	1.42	1634	4196
WAC1030	236020.2	7029260	9	491.86	1.44	2.92	1.48	1541	2881
WAC1031					0.84	1.54	0.7	710	
WAC1031	236014.3	7029268	9	491.88	1.94	2.84	0.9	1423	3063

WAC1032	236008.8	7029276	9	491.86	2.22	2.5	0.28	866	1118
WAC1033	236003.2	7029284	9	491.89	1.5	2.9	1.4	1933	3795
WAC1034	235997.3	7029293	9	491.85	1.3	2.88	1.58	1629	2959
WAC1035	235989.1	7029287	9	491.86	2.22	2.8	0.58	1572	2705
WAC1036					0.8	1.24	0.44	521	
WAC1036	235994.9	7029279	9	491.86	1.98	2.88	0.9	1989	3399
WAC1037	236000.5	7029270	9	491.86	1.4	2.66	1.26	1250	2483
WAC1038	236006.2	7029262	9	491.86	1.1	3.02	1.92	1623	3293
WAC1039					0.82	1.44	0.62	579	
WAC1039	236011.9	7029254	9	491.83	2.16	3.24	1.08	1374	4024
WAC1040	236017.7	7029246	9	491.87	0.74	2.76	2.02	2049	6623
WAC1041	236023.6	7029237	9	491.84	0.66	2.82	2.16	1288	4924
WAC1042	236029.2	7029230	9	491.84	1.12	3.28	2.16	2165	7288
WAC1043	236035	7029221	9	491.86	1.42	3.04	1.62	1538	3447
WAC1044	236040.9	7029213	9	491.89	1.22	2.98	1.76	1875	3624
WAC1045	236032.6	7029207	9	491.88	1.5	2.7	1.2	2652	4380
WAC1046	236021.3	7029224	9	491.88	0.96	3.24	2.28	2025	7276
WAC1047	236015.5	7029232	9	491.88	1.32	3.08	1.76	2045	5705
WAC1048	236009.8	7029240	9	491.84	0.82	2.94	2.12	1635	5256
WAC1049	236004	7029248	9	491.85	2.38	2.74	0.36	968	1333
WAC1050	235998	7029256	9	491.88	1.32	2.6	1.28	2174	5171
WAC1051					0.86	1.74	0.88	1160	
WAC1051	235992.1	7029265	9	491.87	2.14	2.78	0.64	2313	4967
WAC1052					0.8	1.46	0.66	673	
WAC1052	235986.7	7029273	9	491.85	2.16	2.66	0.5	1658	2919
WAC1053	235981.1	7029281	9	491.86	1.48	2.68	1.2	1682	3298
WAC1146	235976.6	7029278	9	491.93	1	2.64	1.64	1855	6179
WAC1147					1.02	1.52	0.5	634	
WAC1147	235982.2	7029270	9	491.91	2.18	2.64	0.46	1154	1680
WAC1148	235988.2	7029262	9	491.9	1.06	2.76	1.7	2030	3836
WAC1149	235993.7	7029254	9	491.91	0.86	2.94	2.08	1370	4802
WAC1150	235999.7	7029245	9	491.87	1.78	3.12	1.34	1649	4463
WAC1151	236005.4	7029237	9	491.9	0.86	3.36	2.5	2376	5679
WAC1152	236011.2	7029229	9	491.9	0.72	2.84	2.12	1385	4832
WAC1153	236017.3	7029220	9	491.88	0.88	3	2.12	2365	7304
WAC1154	236022.6	7029213	9	491.9	1.28	2.86	1.58	2076	4069
WAC1155	236028.4	7029205	9	491.9	1.32	2.7	1.38	2502	8815
WAC1156	236036.7	7029210	9	491.93	1.3	2.9	1.6	2786	6868
WAC1157	236031.1	7029218	9	491.89	1.4	2.86	1.46	2183	5856
WAC1158	236025.3	7029227	9	491.88	0.82	3.28	2.46	1786	5177
WAC1159	236019.5	7029235	9	491.88	0.56	2.82	2.26	2039	6783
WAC1160					1.1	1.46	0.36	741	
WAC1160	236013.8	7029243	9	491.87	2.08	2.82	0.74	1720	2745
WAC1161	236008	7029251	9	491.88	1.86	2.68	0.82	1206	2215
WAC1162					0.82	1.32	0.5	555	
WAC1162					1.58	1.8	0.22	581	
WAC1162	236002.3	7029259	9	491.87	2.06	3.02	0.96	2931	5785
WAC1163	235996.5	7029267	9	491.87	0.62	1.52	0.9	1256	2506
WAC1163					1.82	2.9	1.08	1205	
WAC1164	235990.7	7029276	9	491.88	1.9	2.72	0.82	1338	2347

WAC1165	235993.5	7029290	9	491.9	1.6	2.72	1.12	978	1391
WAC1166					1.1	1.74	0.64	832	
WAC1166	235999.2	7029282	9	491.89	1.98	2.72	0.74	1429	3043
WAC1167	236004.8	7029273	9	491.87	1.24	2.68	1.44	1250	3609
WAC1168					0.8	1.72	0.92	839	
WAC1168	236010.5	7029265	9	491.88	2	2.84	0.84	1508	2569
WAC1169	236016.2	7029257	9	491.88	1.04	2.74	1.7	2808	9735
WAC1170					0.96	1.6	0.64	1136	
WAC1170	236021.9	7029249	9	491.9	1.92	2.74	0.82	1572	3106
WAC1171	236027.7	7029240	9	491.89	0.78	3.12	2.34	1626	6992
WAC1172	236033.4	7029232	9	491.87	1.16	3.24	2.08	1785	5138
WAC1173	236039.3	7029224	9	491.86	1.58	2.82	1.24	1752	3777
WAC1174	236044.8	7029216	9	491.9	1.42	3	1.58	1886	3133
WAC1175	236052.8	7029222	9	491.85	1.5	3.08	1.58	1942	3907
WAC1176	236047.5	7029230	9	491.87	1.7	2.78	1.08	2796	7283
WAC1177	236041.7	7029238	9	491.88	1.22	2.84	1.62	2287	5442
WAC1178	236035.9	7029246	9	491.86	2.02	2.6	0.58	2672	5755
WAC1179	236024.3	7029263	9	491.86	1.42	2.86	1.44	2794	5051
WAC1180	236012.9	7029279	9	491.87	1.3	3.1	1.8	2120	4119
WAC1181	236007.3	7029287	9	491.85	0.74	2.7	1.96	1400	5854
WAC1182	236001.5	7029296	9	491.89	1.12	2.84	1.72	3561	10109
WAC1183	236010.5	7029301	9	491.94	1.44	2.88	1.44	2567	4291
WAC1184	236015.5	7029293	9	491.87	1.46	2.6	1.14	2800	6516
WAC1185	236020.9	7029285	9	491.88	1.22	2.8	1.58	2798	5640
WAC1186	236026.7	7029277	9	491.87	1.36	2.82	1.46	1591	3616
WAC1187	236032.5	7029268	9	491.87	1.48	2.86	1.38	1213	2666
WAC1188	236038.3	7029260	9	491.88	1.56	2.94	1.38	2180	5194
WAC1189	236044	7029252	9	491.86	1.34	2.6	1.26	1733	3225
WAC1190	236049.8	7029244	9	491.87	1.96	2.76	0.8	2364	4560
WAC1191	236055.6	7029236	9	491.86	1.34	2.84	1.5	1664	4579
WAC1192	236061.2	7029227	9	491.87	1.88	2.84	0.96	2580	5839
WAC1193	236069.4	7029233	9	491.84	1.3	2.88	1.58	2340	6281
WAC1194	236063.6	7029241	9	491.85	1.3	2.68	1.38	3603	8492
WAC1195	236057.8	7029250	9	491.83	0.98	2.74	1.76	2163	7337
WAC1196	236052.2	7029258	12	491.85	2.02	3	0.98	1311	2716
WAC1197	236030.2	7029255	9	491.87	1.46	2.96	1.5	1873	4856
WAC1198	236046.3	7029266	9	491.88	1.08	2.82	1.74	2290	5622
WAC1199	236040.6	7029274	9	491.86	1.36	3.02	1.66	2486	6337
WAC1200	236034.9	7029282	9	491.86	1.32	3.06	1.74	1105	1720
WAC1201	236029.2	7029291	9	491.88	1.44	2.94	1.5	2254	3901
WAC1202	236023.5	7029299	9	491.9	1.54	2.94	1.4	3471	8345
WAC1203	236018.1	7029307	9	491.86	1.46	2.48	1.02	1748	3534
WAC1204	236026.1	7029313	9	491.91	1.44	2.96	1.52	1806	4148
WAC1205	236031.8	7029305	9	491.92	1.46	3.02	1.56	1550	2996
WAC1206	236037.3	7029296	9	491.85	1.3	2.58	1.28	2813	4948
WAC1207	236043.2	7029288	9	491.84	1.66	2.76	1.1	2011	5264
WAC1208	236048.8	7029280	9	491.9	1.3	2.8	1.5	3590	8034
WAC1209	236054.6	7029272	9	491.9	1.24	3.02	1.78	1769	3845
WAC1210	236060.3	7029264	9	491.89	1.28	2.92	1.64	1967	4677
WAC1211	236066.2	7029255	9	491.8	2.04	2.88	0.84	1488	2309

WAC1212					1.16	1.84	0.68	725	
WAC1212	236072	7029247	9	491.87	2.08	2.6	0.52	940	1288
WAC1213	236077.7	7029239	9	491.86	1.96	2.88	0.92	2040	4059
WAC1214	236085.8	7029245	9	491.77	1.74	2.88	1.14	2689	5803
WAC1215	236080	7029253	9	491.84	1.12	2.62	1.5	3108	6471
WAC1216	236074.5	7029261	9	491.76	1.34	3.04	1.7	1452	2770
WAC1217	236068.6	7029269	9	491.76	1.54	2.96	1.42	1930	4008
WAC1218	236062.9	7029278	9	491.88	1.36	2.96	1.6	2301	4278
WAC1219	236057.3	7029286	9	491.88	1.14	3.42	2.28	1550	3591
WAC1220	236051.5	7029294	9	491.87	1.46	2.76	1.3	2213	4323
WAC1221	236045.8	7029302	9	491.88	1.18	2.64	1.46	1642	3904
WAC1222	236040	7029310	9	491.86	1.48	2.56	1.08	1597	2316
WAC1223	236034.2	7029319	9	491.77	1.34	2.86	1.52	1361	2126
WAC1224	236042.3	7029324	9	491.85	1.16	3.04	1.88	1970	3541
WAC1225					0.56	1	0.44	542	
WAC1225	236048.3	7029316	9	491.85	1.36	2.6	1.24	1485	3396
WAC1226	236053.9	7029308	9	491.84	1.12	2.52	1.4	2700	4492
WAC1227	236059.6	7029300	9	491.86	1.56	2.86	1.3	2850	5482
WAC1228	236065.4	7029291	9	491.89	1.56	2.92	1.36	2036	4195
WAC1229	236071	7029283	9	491.96	2	3.02	1.02	2493	5187
WAC1230	236076.9	7029275	9	491.83	1.62	3.1	1.48	2086	3194
WAC1231	236088.3	7029259	9	491.88	1.48	2.7	1.22	2005	3988
WAC1232	236094.1	7029250	9	491.88	0.92	2.74	1.82	1730	4402
WAC1233	236102.1	7029256	9	491.91	1.16	2.8	1.64	3177	8272
WAC1234	236096.3	7029264	9	491.89	0.98	2.82	1.84	1536	3384
WAC1235	236090.7	7029272	9	491.98	1.2	3	1.8	1147	1971
WAC1236	236084.9	7029281	9	491.86	1.08	2.68	1.6	1583	2548
WAC1237	236079.1	7029289	9	491.81	1.06	2.94	1.88	2005	3925
WAC1238	236073.5	7029297	9	491.85	1.26	2.78	1.52	2114	5119
WAC1239	236067.7	7029305	9	491.87	1.56	2.92	1.36	3262	6192
WAC1240	236061.9	7029313	9	491.85	1.32	2.72	1.4	1958	3028
WAC1241	236056.3	7029322	9	491.9	0.92	2.92	2	2018	5032
WAC1242	236050.4	7029330	9	491.84	1.84	2.62	0.78	1885	3142
WAC1451	235983.6	7029277	9	491.89	1.06	2.66	1.6	882	1846
WAC1452	235989.1	7029269	9	491.88	1.08	2.82	1.74	1697	3307
WAC1453	235994.4	7029260	9	491.85	1.4	2.9	1.5	1415	4616
WAC1454					1.22	1.86	0.64	858	
WAC1454	236006.5	7029244	9	491.87	2.24	3.04	0.8	1261	1897
WAC1455	236012.4	7029236	9	491.9	0.68	2.42	1.74	1050	2863
WAC1455					2.8	3.1	0.3	880	
WAC1456	236018.4	7029228	9	491.86	0.74	3.06	2.32	1747	7454
WAC1457					1.28	1.54	0.26	723	
WAC1457	236023.7	7029220	9	491.88	1.78	2.92	1.14	2875	6627
WAC1458	236029.5	7029211	9	491.89	1.54	2.78	1.24	3083	7136
WAC1459	236035.2	7029203	9	491.92	1.42	2.78	1.36	1862	3431
WAC1460	236043.8	7029209	9	491.95	1.58	2.76	1.18	1600	3969
WAC1461	236038	7029217	9	491.89	1.46	3.18	1.72	2645	5911
WAC1462	236032.3	7029225	9	491.88	1.24	3.24	2	1377	3601
WAC1463	235997.8	7029275	9	491.87	0.9	3.1	2.2	2648	10166
WAC1464					1.08	1.6	0.52	981	

WAC1464	236026.6	7029234	9	491.86	2.06	2.62	0.56	1051	1715
WAC1465					1.1	1.6	0.5	806	
WAC1465	236015	7029250	9	491.87	2.1	2.88	0.78	1339	3890
WAC1466	236009.3	7029258	9	491.88	0.72	2.9	2.18	1154	4544
WAC1467	236003.5	7029266	9	491.89	1.14	2.52	1.38	948	1687
WAC1468					1.44	1.66	0.22	564	
WAC1468	235992.2	7029283	9	491.88	2.28	2.84	0.56	1212	2081
WAC1469	235999.9	7029289	9	491.88	1.34	3.1	1.76	2173	4007
WAC1470					1.18	1.48	0.3	669	
WAC1470	236005.9	7029280	9	491.89	2.1	2.6	0.5	1368	2140
WAC1471	236011.5	7029272	9	491.88	1.76	3.02	1.26	1576	3322
WAC1472	236017.3	7029264	9	491.87	1.14	3.04	1.9	2164	8139
WAC1473	236023	7029256	9	491.87	1.48	3.14	1.66	1729	4666
WAC1474					1.12	1.68	0.56	625	
WAC1474	236028.7	7029248	9	491.89	1.96	2.98	1.02	1751	4755
WAC1475	236034.5	7029239	9	491.86	1.18	3.06	1.88	1719	6928
WAC1476	236040.2	7029231	9	491.86	1.56	3.3	1.74	2348	7914
WAC1477					1	1.32	0.32	562	
WAC1477	236046	7029223	9	491.87	1.54	3.16	1.62	1582	3200
WAC1478	236051.7	7029215	9	491.92	1.14	3.12	1.98	2281	4651
WAC1479	236060.1	7029221	9	491.89	1.12	3.06	1.94	1659	3113
WAC1480	236054.3	7029229	9	491.9	1.1	3.08	1.98	1635	3034
WAC1481	236048.6	7029237	9	491.89	1.28	3.1	1.82	1552	5370
WAC1482	236042.9	7029245	9	491.88	2.02	2.74	0.72	2739	6305
WAC1483	236037.2	7029253	9	491.86	1.86	2.72	0.86	2235	4407
WAC1484					1.1	1.34	0.24	541	
WAC1484	236031.5	7029262	9	491.88	2.08	2.94	0.86	964	1632
WAC1485	236025.9	7029270	12	491.86	1.52	2.96	1.44	2987	5936
WAC1486					1.42	1.64	0.22	555	
WAC1486	236020.1	7029278	9	491.87	1.92	2.9	0.98	4547	10718
WAC1487	236014.2	7029286	9	491.87	1.28	2.58	1.3	1416	2344
WAC1488	236008.5	7029295	9	491.87	1.66	3.02	1.36	3191	4791
WAC1489	236016.5	7029300	9	491.91	1.16	2.8	1.64	3089	9990
WAC1490	236022.1	7029292	12	491.86	1.46	2.88	1.42	2665	6000
WAC1491	236027.8	7029284	9	491.86	1.58	2.96	1.38	2507	5025
WAC1492	236033.6	7029275	9	491.87	0.88	2.94	2.06	1725	4448
WAC1493	236039.3	7029267	9	491.85	1.18	2.74	1.56	1857	5800
WAC1494	236045.2	7029259	9	491.89	1.9	3.04	1.14	1720	3006
WAC1495	236056.5	7029242	9	491.87	0.78	2.7	1.92	1472	3409
WAC1496	236062.4	7029234	9	491.89	1.78	2.82	1.04	2602	3897
WAC1497	236075.9	7029232	9	491.86	2	2.66	0.66	1613	2715
WAC1498	236070.9	7029240	9	491.89	1.54	2.74	1.2	2220	3762
WAC1499	236065	7029248	9	491.9	1.34	2.88	1.54	1474	3444
WAC1500	236059.4	7029257	9	491.85	1.5	2.92	1.42	2100	4268
WAC1501	236053.5	7029265	9	491.83	1.18	2.7	1.52	1963	4343
WAC1502	236047.9	7029273	9	491.82	1.46	2.76	1.3	1952	5697
WAC1503	236042.1	7029281	9	491.81	1.28	2.94	1.66	1610	5882
WAC1504	236036.6	7029289	9	491.85	1.04	2.24	1.2	1055	2073
WAC1505	236030.9	7029298	12	491.88	1.46	2.54	1.08	4125	13823
WAC1506	236025.2	7029305	9	491.88	1.44	2.8	1.36	2208	5084

WAC1507	236032.7	7029312	9	491.9	1.14	2.68	1.54	2683	5250
WAC1508	236038.9	7029303	9	491.94	1.38	2.7	1.32	2230	4349
WAC1509	236044.6	7029295	12	491.89	1.54	2.88	1.34	3093	9889
WAC1510	236050	7029287	12	491.88	0.7	3.06	2.36	1682	4045
WAC1511	236055.9	7029278	9	491.87	1.4	3.12	1.72	1747	3393
WAC1512	236061.8	7029270	9	491.87	1.28	2.84	1.56	1937	4605
WAC1513	236067.2	7029262	9	491.82	1.1	2.9	1.8	1959	6116
WAC1514	236073	7029254	9	491.84	1.98	2.7	0.72	1656	2892
WAC1515	236078.6	7029246	9	491.81	1.72	2.78	1.06	1155	2485
WAC1516	236084.2	7029238	9	491.81	1.74	2.9	1.16	1676	3455
WAC1517	236093.1	7029243	9	491.85	2.22	2.92	0.7	1897	3592
WAC1518	236087.4	7029252	9	491.87	1.48	2.9	1.42	1862	3829
WAC1519	236081.5	7029260	9	491.86	1.52	2.86	1.34	1980	3408
WAC1520	236075.6	7029268	9	491.83	1.42	2.96	1.54	2190	5168
WAC1521	236070.3	7029276	9	491.91	1.6	2.96	1.36	2403	4376
WAC1522	236064.3	7029284	9	491.88	1.4	2.84	1.44	1242	2138
WAC1523	236058.4	7029293	9	491.85	1.4	3.08	1.68	1116	2319
WAC1524	236052.8	7029301	9	491.86	0.8	2.8	2	1232	4861
WAC1525	236047.1	7029309	9	491.89	1.58	2.58	1	1742	2450
WAC1526	236041.2	7029317	9	491.84	1.32	3.06	1.74	1497	3170
WAC1527	236049.8	7029322	9	491.88	1.58	2.44	0.86	1353	1971
WAC1528	236055	7029315	9	491.87	1.34	3.04	1.7	2943	6615
WAC1529	236060.7	7029306	9	491.89	1.14	2.94	1.8	2735	6031
WAC1530	236066.5	7029298	9	491.87	1.26	2.58	1.32	2261	4142
WAC1531	236072.1	7029290	10	491.87	1.1	3.2	2.1	2495	5448
WAC1532	236078	7029282	12	491.9	1.1	2.98	1.88	1493	2444
WAC1533	236083.5	7029274	9	491.92	1.56	3.16	1.6	1585	2956
WAC1534	236089.2	7029265	9	491.87	1.3	3	1.7	2423	4854
WAC1535	236094.8	7029257	9	491.87	0.66	2.88	2.22	1386	3176
WAC1536	236100.4	7029249	9	491.87	1.38	2.76	1.38	2251	4814
WAC1537	236103.8	7029263	9	491.87	1.12	2.78	1.66	1124	1737
WAC1538	236098.1	7029271	9	491.89	1.46	2.8	1.34	1381	2367
WAC1539	236092.3	7029280	9	491.87	1.5	3	1.5	2301	5021
WAC1540	236086.4	7029288	9	491.93	1.4	2.9	1.5	2709	6121
WAC1541	236080.6	7029296	9	491.86	1.24	3.14	1.9	1530	3857
WAC1542	236074.8	7029304	9	491.91	1.36	3.04	1.68	1501	3275
WAC1543	236069.2	7029312	9	491.87	1.38	2.82	1.44	1189	2024
WAC1544	236063.4	7029320	9	491.9	1.54	2.74	1.2	1668	3687
WAC1545	236057.7	7029329	9	491.91	1.94	2.5	0.56	980	1289
WS099	235984.9	7029284	10	491.84	1.86	2.92	1.06	2381	3994
WS100	236020.6	7029242	10	491.87	0.9	3.02	2.12	1249	2278
WS101	236026.7	7029216	10	491.86	1.34	3	1.66	1897	4132
WS102	236068.1	7029226	10	491.8	1.34	2.74	1.4	2046	4115
WS103	236109.1	7029255	10	491.86	1.62	2.84	1.22	1508	2941
WS104	236082.5	7029267	10	491.9	1.46	2.92	1.46	2020	4153
WS105	236060.1	7029281	10	491.83	1.24	2.9	1.66	1808	3866
WS106	236026.4	7029295	10	491.86	1.2	2.82	1.62	1893	4359
WS107	236071.8	7029308	10	491.87	1.14	2.64	1.5	695	1036
WS108	236051	7029251	10	491.87	1.94	2.92	0.98	2002	3131
WS109	236018.7	7029271	10	491.83	1.08	2.86	1.78	2270	4899

WS110				1.12	1.58	0.46	548		
WS110	236001	7029252	14	491.88	2.02	2.7	0.68	1415	2453
WS129	236049.2	7029226	10	491.87	1.48	2.76	1.28	2822	6936

[^0]: ${ }^{1}$ List of all average grade intersections provided in the Table of Drill Hole Results (column 9) on page 22
 2, ${ }^{5}$ Deconvolved gamma radiation measurements

[^1]: ${ }^{3}$ Refer ASX announcement 9 September 2013
 ${ }^{4}$ Gamma radiation and geochemical assays (refer ASX announcement 8 October 2013 for explanation of sampling techniques and data relating to the previous and current drill campaign referred to in this announcement)

[^2]: ${ }^{6}$ Refer to Competent Persons' Statement in this release. It can be confirmed that there has been no material change to resources of the Wiluna Project since the last reporting of the Wiluna Project's resources on the 20th November 2013.
 ${ }^{7}$ Tonnes and pounds are quoted to one decimal place which may cause rounding errors when tabulating.

