

Institute of Advanced Studies

Uranium: Critical to a Clean Energy Future

Vanessa Guthrie August 2015

2015 ATSE Eminent Speaker Series

toroenergy.com.a

Why talk about uranium?

How safe is uranium and nuclear?

Can Fukushima happen again?

Can Australian uranium be diverted to weapons?

What is the answer to waste disposal?

How is nuclear part of the world energy mix?

Uranium and Radiation

ENERGY LIMITED

- Heaviest naturally occurring metal
- Mildly radioactive in natural form
- 3 isotopic forms ²³⁸U ²³⁵U ²³⁴U
- Uranium ore =
 - ²³⁸U = 99.3%
 - $^{235}U = 0.7\%$ (fissile)
- To convert U ore to nuclear fuel requires multiple processing steps
- 1 kg $U_3O_8 = 20,000$ t black coal
- Sufficient energy to power an average household for 25 years

Where does radiation come from?

Total annual per capita dose = 3.2 mSv

Source: Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)

Sources of Radiation Exposure

What most people don't know about radiation....

Source: United Nations Scientific Committee on the Ellects of Atomic Radiation (UNSCEAR)

toroenergy.com.au

Ionising Radiation in Medicine

- 2 million doses made each year
- 1 in 2 Australians will have a nuclear medicine scan in their lifetime
- Diagnostic and therapeutic applications
 - Diagnosis and treatment of cancers
 - Scans for tumours, lymphoma, renal function etc
 - Organ imaging for functionality
- Tc-99m most commonly used
- Mo-99 only produced in Australia

Source: ANSTO 2015

toroenergy.com.au

Occupational Exposure in Australia

Average and maximum effective doses for uranium industry workers (2004 – 2014)

Source: Australian National Dose Register 2015

Nuclear Fuel Cycle

Source: Australian Government, Department of the Prime Minister and Cabinet

Lessons from Incidents

Three Mile Island

- Operator training
- "Human" factors

Chernobyl

- Plant design
- Planned maintenance
- "Human" factors

Fukushima

- Plant design
- Risk Protection
- Early warning systems
- Useful life

Deaths from nuclear related events

Events since Fukushima

- Japan systematically closed reactor fleet over 2 year period
- Loss of 30% power generating capacity replaced by oil, coal and gas
- Japan committed to 22% nuclear energy as part of future energy mix
- 2 reactors allowed to re-start Ohi 1 and Ohi 2 then closed after one year operation
- 25 reactors re-start applications in place
- Sendai 1 reactor re-started 10 August, Sendai 2 reactor now ready
- Japanese nuclear operators investing ¥3 trillion in safety measures
- China suspended approvals for reactor new builds, now recommenced Gen IV design

New Reactor Design

Generation IV: Nuclear Energy Systems Deployable no later than 2030 and offering significant advances in sustainability, safety and reliability, and economics

Generation I Generation II Generation III Early Prototype Near-Term Commercial Power Reactors **Deployment** Reactors Advanced Generation IV **LWRs** Generation III+ Evolutionary - Highly Designs Offering Economical Improved - Enhanced Economics Safety - Shippingport - Minimal - Dresden, Fermi I - ABWR Waste - Magnox - System 80+ Proliferation - LWR-PWR, BWR Resistant - AP600 - CANDU - EPR - VVER/RBMK Gen III+ Gen II Gen III Gen IV 1950 1960 1970 1980 1990 2000 2010 2020 2030

Uranium and Nuclear Weapons

- ²³⁵U is required at 3-5% for nuclear power generation
- Fissile ²³⁵U or ²³⁹Pu is required at >95% for weapons
- ²³⁹Pu only generated in first few months of reactor operation after which swamped by ²⁴⁰Pu (non-fissile)
- IAEA safety checks every 13 months including detection of weapons grade material or diversion
- International sanctions for non-compliance under NPT
- Australia contributes to IAEA inspectors, safeguards
- "Megatons to Megawatts" US-Russia program
 - 20 years, US\$1.3 billion
 - 500 tonnes weapons grade HEU removed
 - 7 trillion KWH or 10% US electricity generation

Source: WNA

Nuclear Non-Proliferation Treaty

- NPT commenced in 1968, now 191 countries have signed
- 5 recognised nuclear states US, Russia, UK, France and China
- 5 other countries that are non-signatories India, Pakistan, South Sudan, Israel and North Korea
- Nuclear weapons declared in Pakistan, India, known in Israel, North Korea
- India = "no first use" policy, India Safeguards Agreement (IAEA)
- Australia-India Nuclear Civil Cooperation Agreement signed in 2014
 - Yet to be ratified by Australian Parliament
 - Will need to meet Australian Safeguards Act
 - Reflects IAEA requirements

Nuclear Fuel and Waste

		Percent by radioactive content	Percent by volume
Low level waste	Hospitals/medical; Industrial, tailings	1	90
Intermediate level waste	Resins, cladding, industrial, construction	4	7
High level waste	Spent fuel, reprocessed waste	95	3

The hockey puck test:

High level spent fuel from one person's lifetime

The waste dilemma

ENERGY LIMITED

toroenergy.com.a

- Technology solutions available today
 - Multiple barrier systems
 - Geological repositories
- Total waste over 60 years = $30,000m^3$
- Equivalent to 10 Olympic swimming pools
- By 2040 = 60,000 m³
- 1GWe reactor = $3m^3$ (27t) per year of waste
- 1000 years to decay to original radioactivity levels
- 5% total cost of electricity production

Uranium – critical to a clean energy future

7.3 billion people....

47% of world's population

6 out of 10

Have nuclear power

World Energy Outlook 2014

Primary energy demand, 2035 (Mtoe)⁽¹⁾

Share of global growth 2012-2035

Source: IEA 2014

toroenergy.com.au

Where will the energy come from?

		Increase by 2040	Percent % increase
Oil supplies	Non-OPEC supplies to 2025 Requires investments in Middle East	14 mbd	15
Coal	70% output from India, Indonesia, China, Australia by 2040	6,350 Mtce	0.5%pa
Gas	Includes unconventional gas 31% increase Requires \$11 trillion infrastructure investment	5,400 bcm	50
Nuclear	Includes 380 GW added, 148 GW retired	624 GW	60
Renewables	Includes hydro, solar, wind, biofuels 33% global power generation by 2040 Requires subsidies of \$205 billion in 2040	16,500 TWh	300
CO ₂ emissions	40% of global emissions over the period	15.4 Gt	16

Source: IEA 2014

Uranium as a source of energy

1 kg uranium Household for 25 years

The energy content of uranium oxide⁶

Nuclear Power today

69 Under construction

Global Uranium Market

Source: TradeTech 2015

Global Nuclear Power Growth

Nuclear Power in 2040

60% 🛧

624GW

380 GW added 148 GW retired

112,000Mt

CO₂ emissions avoided

Nuclear Power & Climate Change

toroenergy.com.a

Source: Centre for Integrated Sustainability Analysis, The University of Sydney

- Source of low emissions energy
- Life cycle emissions in the same range as renewables
- Competitive average levelised costs per unit power output (\$/MWh)
- Recognition by US-China Joint Announcement on Climate Change
- Nuclear power generation projected to grow by 60% by 2040
- 1GWe nuclear reactor could meet Australia's emissions reductions commitments by displacement of fossil fuels

Life cycle emissions from power generation

Source: IEA, 2014; MCA 2015

Comparable cost of nuclear power

Source: US Energy Information Administration

Australian Uranium Facts

toroenergy.com.a

1st in resources

• 32 per cent of global uranium resources

2nd largest primary energy source

• 22 per cent total primary energy production in 2012/13

3rd in global production

• 11 per cent of global supply in 2013.

4,200 jobs

· Uranium industry employment, much in remote areas

5,710 tonnes

- production of uranium in 2013-14
- Equal to >90% of domestic energy consumption

\$622 million

- Australian uranium export earnings in 2013/14
- \$1.1billion forecast value of Australia's uranium exports in 2018/19

Australia's contribution.... and potential

Uranium – critical to a clean energy future

- Uranium and nuclear industry has strong track record
- Strong regulatory environment controls safety
- International safeguards protect against proliferation
- Technical solutions for waste are available now
- Nuclear power is important in meeting global energy demand
- Nuclear is a natural partner for renewables
- Australia = significant U resources, but underrepresented as a global supplier
- Wiluna Project = an opportunity for WA

Thank you

Dr Vanessa Guthrie Managing Director Toro Energy Limited

L3 33 Richardson street WEST PERTH WA 6005 Telephone: +61 8 9214 2100 Email: <u>info@toroenergy.com.au</u> Website: <u>www.toroenergy.com.au</u>

