

ASX RELEASE

2 October 2015

CLARIFICATION REGARDING PRESENTATION RELEASED TO THE ASX ON 1 OCTOBER 2015

At the request of the ASX, Toro Energy Limited (ASX:TOE) wishes to advise that it has updated the "Presentation to Sydney Mining Club" announcement to include the statement required in respect of the Theseus resource estimate being prepared under JORC 2004 and competent persons statement.

Todd Alder Company Secretary

Sydney Mining Club

Vanessa Guthrie

1 October 2015

Uranium: critical to a clean energy future

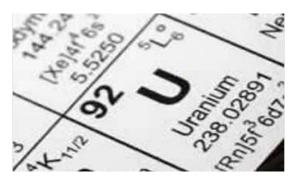
toroenergy.com.a

Why talk about uranium?

How safe is uranium and nuclear?

Can Fukushima happen again?

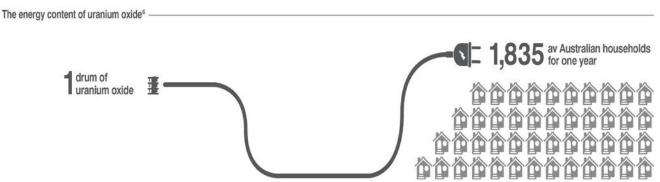
Can Australian uranium be diverted to weapons?


What is the answer to waste disposal?

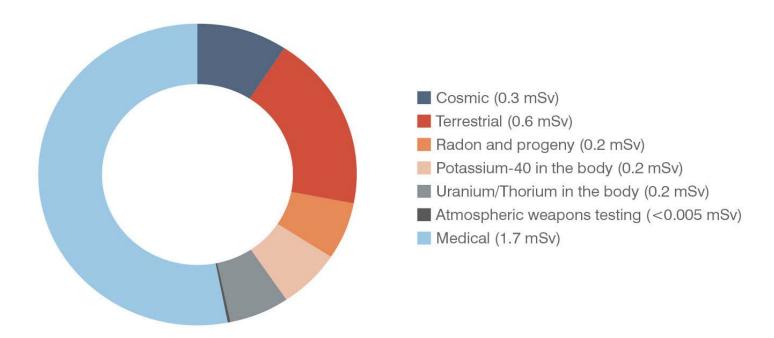
How is nuclear part of the world energy mix?

Uranium and Radiation

- Heaviest naturally occurring metal
- Mildly radioactive in natural form
- 3 isotopic forms ²³⁸U ²³⁵U ²³⁴U
- Uranium ore =
 - $^{238}U = 99.3\%$
 - $^{235}U = 0.7\%$ (fissile)
- To convert U ore to nuclear fuel requires multiple processing steps
- 1 kg $U_3O_8 = 20,000$ t black coal
- Sufficient energy to power an average household for 25 years



Uranium as a source of energy



= 1 kg uranium Household for 25 years

Where does radiation come from?

Total annual per capita dose = 3.2 mSv

Source: Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)

Sources of Radiation Exposure

1mSv

Annual dose

What most people don't know about radiation....

Source: United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 0.03 mSv

10 hours

Nuclear Fuel Cycle

Source: Australian Government, Department of the Prime Minister and Cabinet

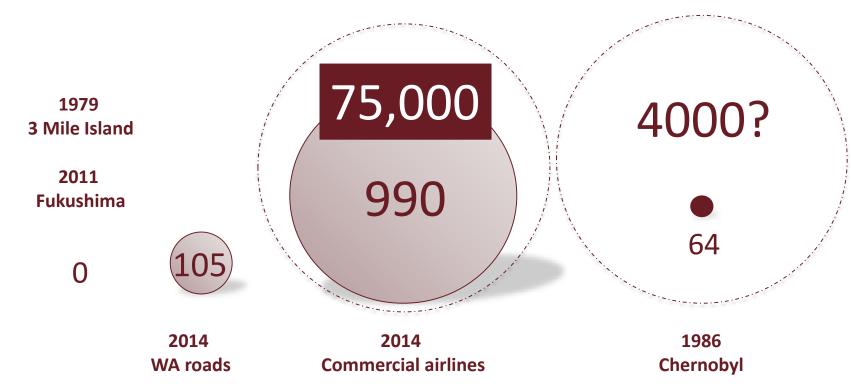
Lessons from Incidents

Three Mile Island

- Operator training
- "Human" factors

Chernobyl

- Plant design
- Planned maintenance
- "Human" factors

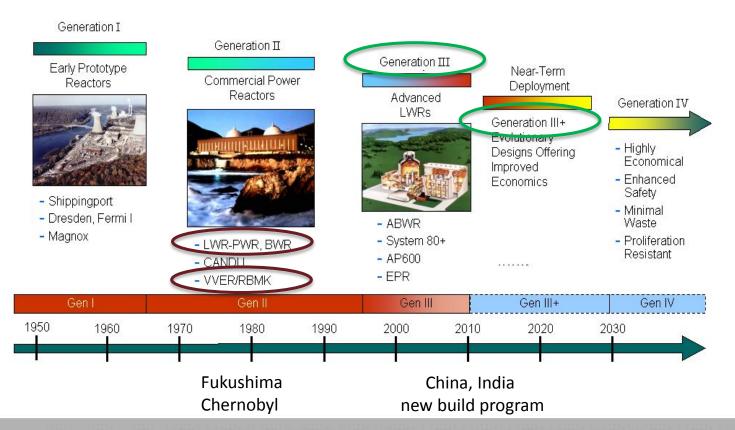


Fukushima

- Plant design
- Risk Protection
- Early warning systems
- Useful life

Deaths from Nuclear related events

ource: WA Police, UNSCEAR, IAEA, CN


Events since Fukushima

- Japan systematically closed reactor fleet over 2 year period
- Loss of 30% power generating capacity replaced by oil, coal and gas
- Japan committed to 22% nuclear energy as part of future energy mix
- 2 reactors allowed to re-start Ohi 1 and Ohi 2 then closed after one year operation
- 25 reactors re-start applications in place
- Sendai 1 reactor re-started 10 August, Sendai 2 reactor now ready
- Japanese nuclear operators investing ¥3 trillion in safety measures
- China suspended approvals for reactor new builds, now recommenced Gen IV design

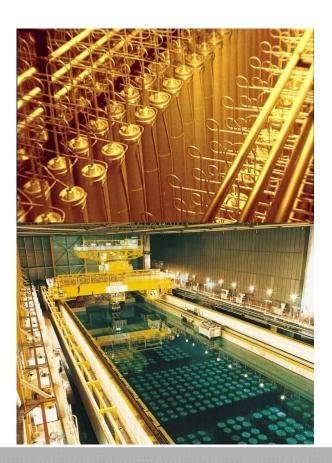
New Reactor Design

Nuclear Non-Proliferation Treaty

- NPT commenced in 1968, now 191 countries have signed
- 5 recognised nuclear states: US, Russia, UK, France and China
- 5 non-signatories: India, Pakistan, South Sudan, Israel and North Korea
- Nuclear weapons declared in Pakistan, India, known in Israel, North Korea
- 235U is required at 3-5% for nuclear power; >95% for weapons
- "Megatons to Megawatts" US-Russia program
 - 20 years, US\$1.3 billion
 - 500 tonnes weapons grade HEU removed
 - 7 trillion KWH or 10% US electricity generation
- Australia-India Nuclear Civil Cooperation Agreement 2014
 - Yet to be ratified by Australian Parliament
 - Will need to meet Australian Safeguards Act
 - Reflects IAEA requirements

Nuclear Fuel and Waste

		Percent by radioactive content	Percent by volume
Low level waste	Hospitals/medical; Industrial, tailings	1	90
Intermediate level waste	Resins, cladding, industrial, construction	4	7
High level waste	Spent fuel, reprocessed waste	95	3


The hockey puck test:

High level spent fuel from one person's lifetime

The waste dilemma

- Technology solutions available today
 - Multiple barrier systems
 - Geological repositories
- Total waste over 60 years = 30,000m³
- Equivalent to 10 Olympic swimming pools
- By $2040 = 60,000 \text{ m}^3$
- 1GWe reactor = 3m³ (27t) per year of waste
- 1000 years to decay to original radioactivity levels
- 5% total cost of electricity production

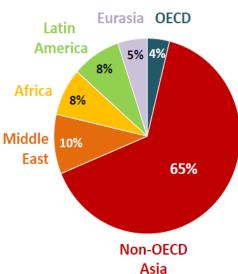
Uranium – critical to a clean energy future

7.3 billion people....

47% of world's population

6 out of 10

Have nuclear power

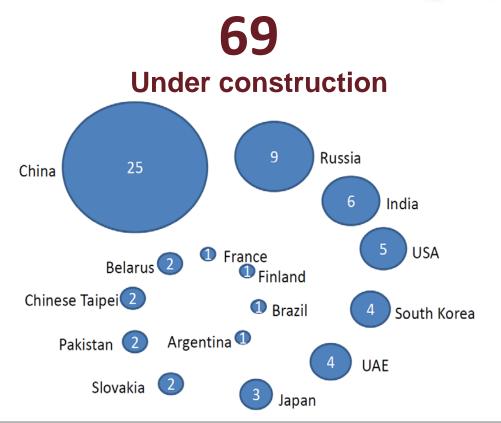

World Energy Outlook 2014

Primary energy demand, 2035 (Mtoe)

Share of global growth 2012-2035

Where will the energy come from?

		Increase by 2040	Percent % increase
Oil supplies	Non-OPEC supplies to 2025 Requires investments in Middle East	14 mbd	15
Coal	70% output from India, Indonesia, China, Australia by 2040	6,350 Mtce	0.5%pa
Gas	Includes unconventional gas 31% increase Requires \$11 trillion infrastructure investment	5,400 bcm	50
Nuclear	Includes 380 GW added, 148 GW retired	624 GW	60
Renewables	Includes hydro, solar, wind, biofuels 33% global power generation by 2040 Requires subsidies of \$205 billion in 2040	16,500 TWh	300
CO ₂ emissions	40% of global emissions over the period	15.4 Gt	16


Source: IEA 2014

Nuclear Power today

344
Operating reactors

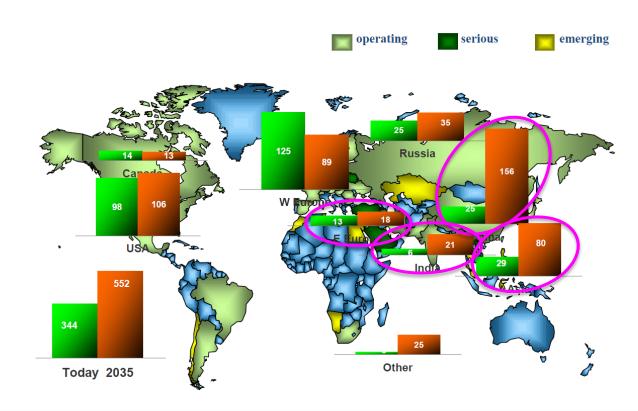
Nuclear Power in 2040

60%

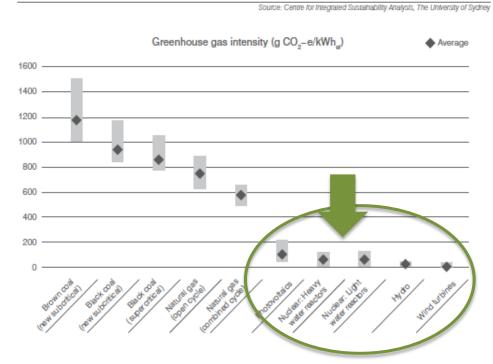
624GW

380 GW added 148 GW retired

112,000Mt

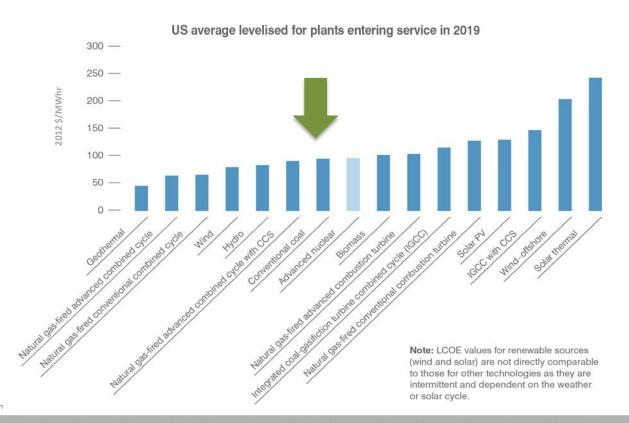

CO₂ emissions avoided

Global Nuclear Power Growth


- 60% increase in nuclear power by 2040
- 624 GWe
- China:
 - 58 GWe by 2020
 - Largest nuclear fleet by 2025
- India:
 - 17GWe by 2024
 - 25% energy mix by 2050
- Middle East:
 - UAE, Saudi Arabia, Egypt, Jordan
 - Displacing domestic gas power gen

Nuclear Power and Climate Change

- Source of low emissions energy
- Life cycle emissions in the same range as renewables
- Competitive average levelised costs per unit power output (\$/MWh)
- Recognition by US-China Joint Announcement on Climate Change
- Nuclear power generation projected to grow by 60% by 2040
- 1GWe nuclear reactor could meet Australia's emissions reductions commitments by displacement of fossil fuels



Life cycle emissions from power generation

Source: IEA, 2014; MCA 2015

Comparable Cost of Nuclear Power

Source: US Energy Information Administration

Australian Uranium Facts

1st in resources

• 32 per cent of global uranium resources

2nd largest primary energy source

• 22 per cent total primary energy production in 2012/13

3rd in global production

• 11 per cent of global supply in 2013

4,200 jobs

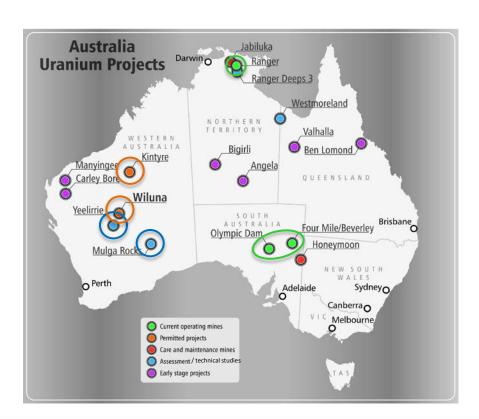
• Uranium industry employment, much in remote areas

5,710 tonnes

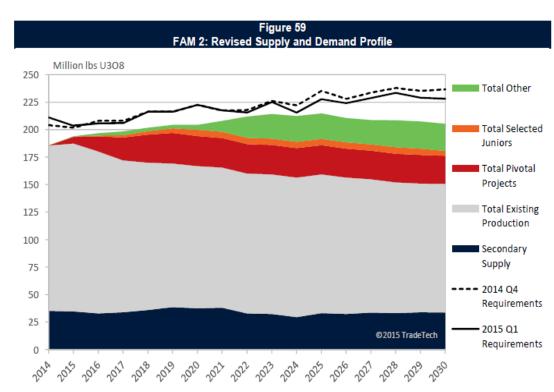
- production of uranium in 2013-14
- Equal to >90% of domestic energy consumption

\$622 million

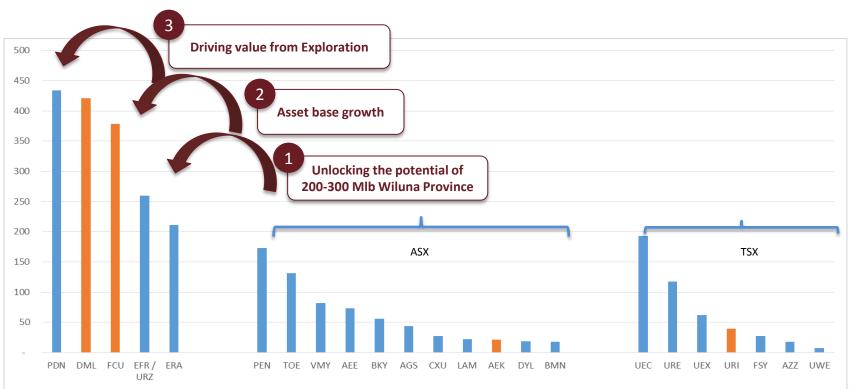
- Australian uranium export earnings in 2013/14
- \$1.1billion forecast value of Australia's uranium exports in 2018/19



Australian uranium... many opportunities, few choices


- Free trade deals China, South Korea and Japan
- India Australia Nuclear Civil Cooperation Agreement signed, Free Trade Agreement expected 2015
- Australia strong production history but now only three mines in operation
- Queensland assets now under uranium ban again; approvals required by 2017 for WA assets
- 2018 forecast production limited to Olympic Dam, Four Mile
- Near term production assets with approvals ready to go are limited – Wiluna is at the front of the queue

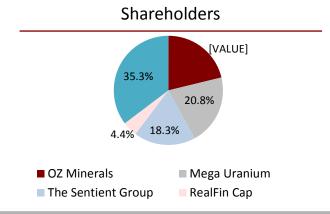
Global uranium market


- Global uranium stocks are high, filling demand gap and holding back investment
- Uranium prices taking longer to recover, but long term fundamentals remain strong
- Forecast demand/supply shows a gap emerging in mid term
- Australia is well positioned to deliver into growing Asian market
- Toro continues to focus on developing Wiluna allowing value to be realized permitting and traditional owner agreements, resource improvement, project financing

Toro's vision

Create a significant mid-tier uranium company

Toro's asset portfolio

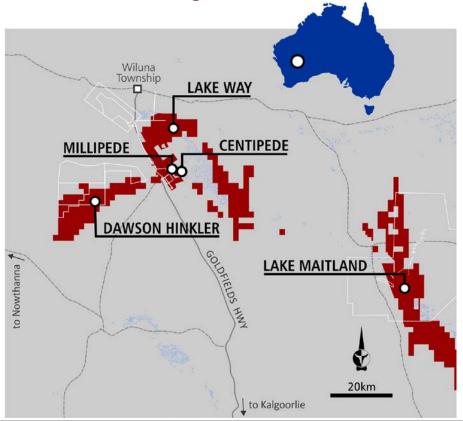


Capital structure

Capital Structure						
ASX Code		TOE				
Ordinary Shares on Issue	m	2,000.8				
Share Price	cps	5.8				
Undiluted Market Capitalisation	A\$m	116.0				
Cash (31 August 2015)	A\$m	15.8				
Loan	A\$m	6.0				

Directors						
John Cahill (1)	Acting Chairman					
Vanessa Guthrie	Managing Director					
Richard Patricio – Mega	NED					
Richard Homsany – Mega	NED					
Michel Marier – Sentient	NED					
Board and management shareholding – OTM options and performance rights	2% of diluted issued capital					

Research Coverage


Realfin Capital Partners

Dundee

Proactive Investors

Wiluna Project

Wiluna Project - highlights

Location

520 km north of Kalgoorlie and 30 km south of Wiluna

Highlights (1)

- 6 shallow calcrete-hosted carnotite deposits
- Centipede, Lake Way, Millipede, Lake Maitland
- 1.3Mtpa plant, 2mlbpa production
- Life of mine 16+ years
- First class mining jurisdiction; 100+ years of mining history
- Infrastructure and services available power, gas, transport, people
- 350 workers in construction, 170 production
- Major environmental approvals to commence mining now in place

Status

- State & Federal Environmental approvals granted for processing, Centipede and Lake Way deposits
- Current application for Millipede/Lake Maitland submitted
- Optimisation studies underway
- Low technical risk simple open cut mining and proven process flow sheet
- Project financing ahead

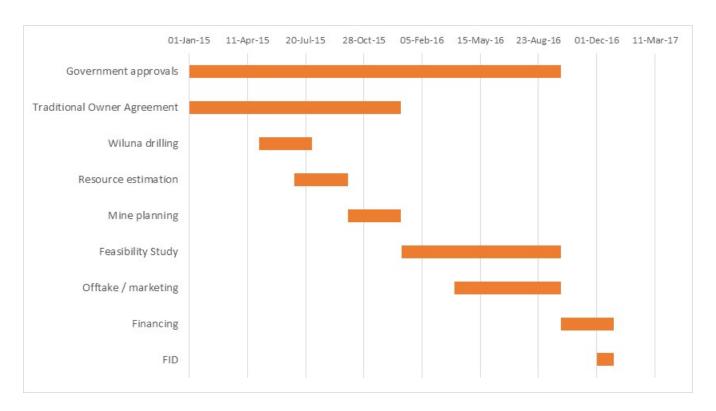
Wiluna – a low impact project

- No discharge to surface waters
- No listed species of significance
- Re-use of all mine dewatering
- In-pit tailings storage
- CoGen power heat and off gas recovery into processing facility
- No standing landforms post-mining
- Culturally sensitive areas excluded from mining

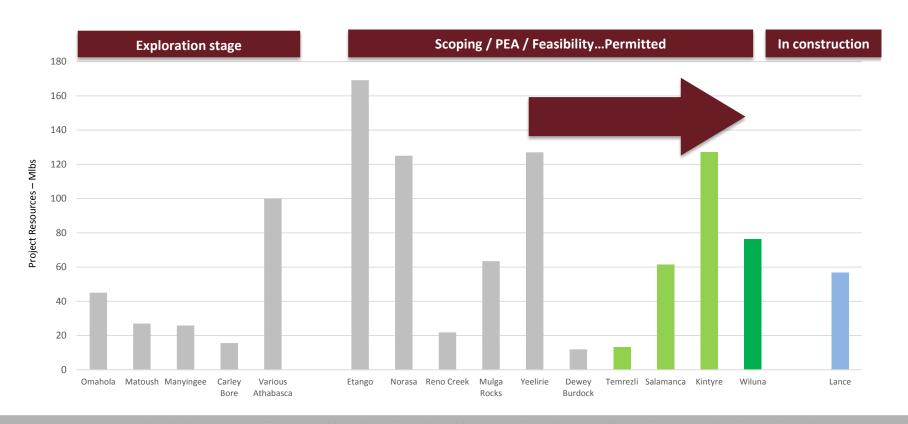
Community

- Strong regional support for Toro's efforts including the Wiluna shire and Traditional Owners
- The region needs new mining proposals Magellan recently placed on care and maintenance, no exploration discoveries
- Mine would employ over 300 people in construction and an operating workforce of 180
- Annual mine expenditure of approximately \$80M
- Well advanced with a mining agreement with the Traditional Owners
 - Consultation has been consistent for many years
 - Commitments to training and education to build capacity
 - Liaison Committee to be formed, representatives to be employed
 - The mine will require land management services, environmental and heritage management and monitoring
 - Production and milestone payments

Project funding considerations



- Debt financing with suitable offtake in place could support up to \$160M project finance
- JAURD / Itochu own an option to invest US\$39M in Lake Maitland for a 35% interest
- Opportunity for significant strategic partner to assist the project financing
- Asia and the merging economies are the target


Development timetable

Why Wiluna? ...pathway to production

Uranium and Toro – part of a clean energy future

- Uranium and nuclear industry has strong track record
- Nuclear power is important in meeting global energy demand in a carbon constrained world
- Australia has significant U resources and real opportunity for growth
- Toro has a clear vision to create value in the uranium industry
- Our belief in the uranium market and in the need to continue to advance the approved Wiluna Uranium Project despite slow market pressure
- On the doorstep of the fastest growing world economies in China and India
- The Wiluna Uranium Project is at the front of the Australian project development queue

Thank You

Dr Vanessa Guthrie

Managing Director

Toro Energy Limited

L3 33 Richardson street WEST PERTH WA 6005

Telephone: +61 8 9214 2100 Email: <u>info@toroenergy.com.au</u>

Website: www.toroenergy.com.au

Appendix - Resources

The Wiluna Uranium Project - JORC 2012											
		Mea	sured	Indie	Indicated Total Measured o			Inferred		Total	
Deposit	Measure	200 ppm	500 ppm	200 ppm	500 ppm	200 ppm	500 ppm	200 ppm	500 ppm	200 ppm	500 ppm
Centipede	Mt's	2.9	1.2	7.5	3.1	10.4	4.3	-	-	10.4	4.3
	Grade ppm	551	872	572	943	566	923	-	-	566	923
	Mlb's U₃O ₈	3.5	2.3	9.5	6.5	13.0	8.8	-	-	13.0	8.8
	Mt's	-	-	10.3	4.2	10.3	4.2	-	-	10.3	4.2
Lake Way	Grade ppm	-	-	545	883	545	883	-	-	545	883
·	Mlb's U₃O ₈	-	-	12.3	8.2	12.3	8.2	_	-	12.3	8.2
	Mt's	-	-	4.5	1.6	4.5	1.6	1.9	0.4	6.4	1.9
Millipede	Grade ppm	-	-	530	956	530	956	382	887	486	943
,	Mlb's U₃O ₈	_	_	5.3	3.3	5.3	3.3	1.6	0.7	6.9	4.0
	Mt's	-	-	19.9	7.5	19.9	7.5	-	-	19.9	7.5
Lake Maitland	Grade ppm	-	-	555	956	555	956	-	-	555	956
	Mlb's U₃O ₈	_	_	24.3	15.7	24.3	15.7	-	_	24.3	15.7
	Mt's	2.9	1.2	42.2	16.3	45.1	17.6	1.9	0.4	47.0	17.9
Sub-total	Grade ppm	551	872	553	935	553	930	382	887	546	930
	Mlb's U₃O ₈	3.5	2.3	51.4	33.7	55.0	36.0	1.6	0.7	56.6	36.7
	Mt's	-	-	8.4	0.9	8.4	0.9	5.2	0.3	13.6	1.1
Dawson Hinkler	Grade ppm	-	-	336	596	336	596	282	628	315	603
	Mlb's U₃O ₈	_	-	6.2	1.1	6.2	1.1	3.2	0.4	9.4	1.5
	Mt's	-	-	-	-	-	-	11.9	2.3	11.9	2.3
Nowthanna	Grade ppm	-	-	-	-	-	-	399	794	399	794
	Mlb's U₃O ₈	_	_	_	_	-	_	10.5	4.0	10.5	4.0
	Mt's	2.9	1.2	50.6	17.2	53.5	18.4	19.0	2.9	72.5	21.3
Total Regional Resource	Grade ppm	551	872	517	918	519	915	365	791	479	898
	Mlb's U₃O ₈	3.5	2.3	57.7	34.8	61.2	37.1	15.3	5.1	76.5	42.2

Theseus Project - Resources

Inferred Mineral Resource	ppm ppm.m	Tonnes (M) ⁽²⁾	Grade ppm	Mlbs (2)
Grade cut-off	200	6.3	493	6.9
GT ⁽¹⁾ cut-off	1,000	6.1	491	6.6

This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that this information has not materially changed since it was reported.⁽³⁾

⁽²⁾ Tonnes and pounds are quoted to one decimal place which may cause rounding errors when tabulating

Appendix - Competent Persons Statement

Wiluna Uranium Project

2012 JORC code compliant resource estimates

The information presented here that relates to Mineral Resources of the Centipede, Millipede, Lake Way, Lake Maitland, Dawson Hinkler and Nowthanna deposits is based on information compiled by Dr Greg Shirtliff of Toro Energy Limited (with the aid of Mega Uranium Limited geologists Mr Stewart Parker and Mr Robin Cox in the case of Lake Maitland) and Mr Robin Simpson and Mr Daniel Guibal of SRK Consulting (Australasia) Pty Ltd. Mr Guibal takes overall responsibility for the Resource Estimate, and Dr Shirtliff takes responsibility for the integrity of the data supplied for the estimation. Dr Shirtliff is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM), Mr Guibal is a Fellow of the AusIMM and Mr Simpson is a Member of the Australian Institute of Geoscientists (AIG) and they have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. The Competent Persons consent to the inclusion in this release of the matters based on the information in the form and context in which it appears.

Theseus Prospect 2004 JORC code compliant resource estimate

The information presented here that relates to the Mineral Resources of the Theseus Prospect is based on information compiled by Dr David Rawlings, formerly of Toro Energy Limited and Mr Michael Andrew of Optiro. Mr Andrew takes overall responsibility for the Resource Estimate and Dr Rawlings takes responsibility for the integrity of the data supplied for the estimation. Dr Rawlings and Mr Andrews are Members of the Australasian Institute of Mining and Metallurgy (AusIMM) and they have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity they are undertaking to qualify as Competent Persons as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. The Competent Person consents to the information presented here relating to Mineral Resources as well as to the form and context in which it appears.